初中数学知识点总结

时间:2025-09-17 08:50:58 数学

初中数学知识点总结15篇(实用)

  总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能使我们及时找出错误并改正,不如静下心来好好写写总结吧。那么总结有什么格式呢?以下是小编为大家收集的初中数学知识点总结,欢迎大家分享。

初中数学知识点总结15篇(实用)

初中数学知识点总结1

  一、初中数学基本概念

  1.方程:含有未知数的等式叫做方程。

  2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  3.方程的解:使方程左右两边相等的未知数的值叫做方程的解。

  4.解方程:求方程的解的过程叫做解方程。

  5.恒等式:两个含有相同的未知数,并且含未知数项的系数都是零的整式方程是一元一次方程。

  二、初中数学基本公式

  1.三角形面积的公式:三角形面积=底×高÷2,用字母表示为“S=ah÷2”。

  2.平行四边形面积的公式:平行四边形面积=底×高,用字母表示为“S=ah”。

  3.梯形面积的公式:梯形面积=(上底+下底)×高÷2,用字母表示为“S=(a+b)h÷2”。

  4.圆的面积公式:圆面积=半径×半径×π,用字母表示为“S=πr2”。

  5.菱形的面积公式:菱形面积=底×高,用字母表示为“S=ab”。

  6.正方形面积公式:正方形面积=边长×边长,用字母表示为“S=a2”。

  7.一元一次方程求解公式:ax=b,其中a和b为方程的系数,x为未知数。当a≠0时,有唯一解;当a=0且b≠0时,无解;当a=0且b=0时,有无数解。

  三、初中数学基本定理

  1.等式的性质:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;等式两边同时乘以(或除以)同一个不为0的数或代数式,所得结果仍是等式。

  2.方程的解法:通过移项、合并同类项、去括号、去分母等方式,将一元一次方程转化为ax=b的形式,求解得到方程的解。

  3.一元一次不等式的解法:将一元一次不等式转化为ax>b或ax

  4.二元一次方程组的解法:通过代入消元法或加减消元法,将二元一次方程组转化为一个一元一次方程,然后求解得到方程组的解。

  5.菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一组对角线平分一组对角。

  6.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质,并且四条边相等,四个角都是直角。

  7.相似三角形的判定定理:两个三角形对应边成比例且对应角相等,则这两个三角形相似。

  8.全等三角形的判定定理:两个三角形三边相等、两边夹角相等、两角夹边相等、两角和一边相等,则这两个三角形全等。

  9.垂径定理:在圆中,直径平分弦(不是直径的弦)所对的两条弧,平分弦所对的圆周弧的弦垂直平分弦。

  10.圆的切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线;经过圆的半径外端且垂直于切线的直线是圆的切线;圆的割线定理:一条直线与一个圆有两个不同的'交点,则这条直线被圆截得的线段长的平方等于这个圆上两点所对应的弦长的平方差。

  11.相交弦定理:圆内的两条相交弦被交点分成的两条线段长的积相等。

  12.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的积相等。

  13.圆心角、弧、弦的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等;相等的弧所对的弦也相等;相等的弦所对的弧也相等;在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;弧的度数等于它所对的圆心角度数;一个圆心角等于它所对的弧的度数;半圆(或直径)所对的圆周角是直角;90°的圆周

初中数学知识点总结2

  轴对称的定义:

  把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  轴对称的性质:

  (1)对应点所连的线段被对称轴垂直平分;

  (2)对应线段相等,对应角相等;

  (3)关于某直线对称的两个图形是全等图形。

  轴对称的判定:

  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  这样就得到了以下性质:

  如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  线段的垂直平分线上的点与这条线段的两个端点的距离相等。

  对称轴是到线段两端距离相等的点的集合。

  轴对称作用:

  可以通过对称轴的一边从而画出另一边。

  可以通过画对称轴得出的两个图形全等。

  扩展到轴对称的应用以及函数图像的意义。

  轴对称的'应用

  关于平面直角坐标系的X,Y对称意义

  如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。

  相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

  关于二次函数图像的对称轴公式(也叫做轴对称公式)

  设二次函数的解析式是y=ax2+bx+c

  则二次函数的对称轴为直线x=—b/2a,顶点横坐标为—b/2a,顶点纵坐标为(4ac—b2)/4a

  在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。

  譬如,等腰三角形经常添设顶角平分线;

  矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;

  正方形,菱形问题经常添设对角线等等。

  另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

初中数学知识点总结3

  一.圆的定义

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

  二.圆心

  1.定义1中的定点为圆心。

  2.定义2中绕的那一端的端点为圆心。

  3.圆任意两条对称轴的交点为圆心。

  4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

  注:圆心一般用字母O表示

  5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

  8.圆的`半径或直径决定圆的大小,圆心决定圆的位置。

  三.圆的基本性质

  1.圆的对称性

  (1)圆是轴对称图形,它的对称轴是直径所在的直线。

  (2)圆是中心对称图形,它的对称中心是圆心。

  (3)圆是旋转对称图形。

  2.垂径定理

  (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

  (2)推论:

  平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

  平分弧的直径,垂直平分弧所对的弦。

  3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

  (1)同弧所对的圆周角相等。

  (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

  4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

  5.夹在平行线间的两条弧相等。

  (1)过两点的圆的圆心一定在两点间连线段的中垂线上。

  (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

  (直角三角形的外心就是斜边的中点。)

  6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

  直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

  四.圆和圆

  1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

  2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

  3.两个圆有两个交点,叫做两个圆的相交。

  4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

  5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

  五.正多边形和圆

  1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

  2.正多边形与圆的关系:

  (1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

  (2)这个圆是这个正多边形的外接圆。

初中数学知识点总结4

  首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。

  充分的利用好上课的时间,上课时间你所掌握的'知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。

  学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。

初中数学知识点总结5

  初中数学的学科地位很高,一直以来是三大学科之一,影响着物理化学的学习。

  圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  推理过程

  根据旋转的性质,将∠aob绕圆心o旋转到∠a'ob'的位置时,显然∠aob=∠a'ob',射线oa与oa'重合,ob与ob'重合,而同圆的半径相等,oa=oa',ob=ob',从而点a与a'重合,b与b'重合。

  因此,弧ab与弧a'b'重合,ab与a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  则得到上面定理。

  同样还可以得到:

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的`弦心距也相等。

  所以,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。

  圆的圆心角知识要领很容易掌握,经常会出现在关于圆的证明题中。

初中数学知识点总结6

  关于初中数学几何知识点总结

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的.任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

  怎样快速提高数学成绩?

  一、查缺补漏,主攻薄弱

  请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。

  别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。

  因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。

  二、反思错题

  不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。

  三、克服无谓失分

  如何避免审题出错?

  原因:看太快。

  应对策略:

  1.默读法;2.重点字词圈点勾画法;3.审图法。

  如何降低计算失误?

  表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。

  应对策略:

  1.不要为了赶时间而跳步计算;

  2.宁可笔算,少用口算,更不要再抱着计算器;

  3.对平时易算错的题型,可以验算一遍。

  四、关注几个重点问题

  1.新定义题型、非常规题型、存在性问题。

  2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。

  提高数学成绩常用方法有哪些

  1、预习

  预期常常由于“没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

  2、学会听课

  听分析、听思路、听应用,关键内容一字不漏,注意记录。

  3、做好错题本

  每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

  4、用好课外书

  正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

  5、注重数学思维方法的培养

  要注意数学思想和方法的指导,站得高,才能看得远。

初中数学知识点总结7

  第一章图形的认识初步

  一、知识框架

  本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

  二、本章书涉及的数学思想:

  分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

  方程思想。在处理有关角的'大小,线段大小的计算时,常需要通过列方程来解决。

  图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

  化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n—1)/2的具体运用上来。

  人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。

  第二章相交线与平行线

  一、知识框架

  二、知识概念

  邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  平行线:在同一平面内,不相交的两条直线叫做平行线。

  同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  命题:判断一件事情的语句叫命题。

  平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

初中数学知识点总结8

  1、xxx:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做xxx。

  2、xxx的分类

  3、xxx的三边关系:xxx任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从xxx的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做xxx的高。

  5、中线:在xxx中,连接一个顶点和它的对边中点的线段叫做xxx的中线。

  6、角平分线:xxx的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的`线段叫做xxx的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、xxx的稳定性:xxx的形状是固定的,xxx的这个性质叫xxx的稳定性。

  9、xxx内角和定理:xxx三个内角的和等于180°

  推论1直角xxx的两个锐角互余

  推论2xxx的一个外角等于和它不相邻的两个内角和

  推论3xxx的一个外角大于任何一个和它不相邻的内角;xxx的内角和是外角和的一半

  10、xxx的外角:xxx的一条边与另一条边延长线的夹角,叫做xxx的外角。

  11、xxx外角的性质

  (1)顶点是xxx的一个顶点,一边是xxx的一边,另一边是xxx的一边的延长线;

  (2)xxx的一个外角等于与它不相邻的两个内角和;

  (3)xxx的一个外角大于与它不相邻的任一内角;

  (4)xxx的外角和是360°。

初中数学知识点总结9

  二元一次方程(组)

  1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  2、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  3、二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  4、二元一次方程组的解法。

  (1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法。

  (2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。

  提醒大家:二元一次方程组的解法包括代人消元法和加减消元法。

  平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的`掌握,同学们认真学习吧。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初中数学知识点总结10

  初中数学知识点总结及解法

  基本知识

  数与代数A、数与式:

  1、有理数

  有理数:

  ①整数正整数/0/负整数

  ②分数正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:

  ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。

  ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:

  ① 同底数幂相乘:a^ma^n=a^(m+n)

  ② 幂的乘方:(a^m)n=a^mn

  ③ 积的乘方:(ab)^m=a^mb^m

  ④ 同底数幂相除:a^ma^n=a^(m-n) (a0)

  这些公式也可以这样用:⑤a^(m+n)= a^ma^n

  ⑥a^mn=(a^m)n

  ⑦a^mb^m=(ab)^m

  ⑧ a^(m-n)= a^ma^n (a0)

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的.形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:

  ①同分母分式相加减,分母不变,把分子相加减。

  ②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:

  ①分母中含有未知数的方程叫分式方程。

  ②使方程的分母为0的解称为原方程的增根。

  方程与不等式

  1、方程与方程组

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  1、一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对它也有很深的了解,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。

  2、一元二次方程的解法

  大家知道,二次函数有顶点式(,),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。

  (1)配方法

  利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。

  (3)公式法

  这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a

  3、解一元二次方程的步骤:

  (1)配方法的步骤:

  先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。

  (2)分解因式法的步骤:

  把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。

  (3)公式法

  就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。

  4、韦达定理

  利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=,二根之积=

  也可以表示为x1+x2=,x1x2=。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

  5、一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为△,读作diao ta,而△=b2-4ac,这里可以分为3种情况:

  I当△0时,一元二次方程有2个不相等的实数根;

  II当△=0时,一元二次方程有2个相同的实数根;

  III当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。

  2、不等式与不等式组

  不等式:

  ①用符号〉,=,〈号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  一元一次不等式的符号方向:

  在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

  在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C

  在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C

  在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)

  在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C

  如果不等式乘以0,那么不等号改为等号

  所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

  函数

  变量:因变量,自变量。

  在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

  ②当B=0时,称Y是X的正比例函数。

  一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  空间与图形

  图形的认识

  1、点,线,面

  点,线,面:

  ①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。

  ③点动成线,线动成面,面动成体。

  展开与折叠:

  ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

  ②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  弧、扇形:

  ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  角

  线:

  ①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  ③将线段的两端无限延长就形成了直线。直线没有端点。

  ④经过两点有且只有一条直线。

  比较长短:

  ①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:

  ①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:

  ①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质

  判定:

  1、对角线相等的菱形

  2、邻边相等的矩形

  基本方法

  1、配方法

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理

  一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等

  5、待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  8、面积法

  平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

  用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  9、几何变换法

  在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个**的任一元素到同一**的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  几何变换包括:

  (1)平移;

  (2)旋转;

  (3)对称。

  10、客观性题的解题方法

  选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

  填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

  要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

  (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

  (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

  (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

  (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

  (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

  (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。

初中数学知识点总结11

  第一章实数

  一、重要概念

  1、数的分类及概念

  数系表:

  说明:“分类”的原则:1)相称(不重、不漏)

  2)有标准

  2、非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3、倒数:①定义及表示法

  ②性质:A。a≠1/a(a≠±1);B。1/a中,a≠0;C。01;a>1时,1/a<1;D。积为1。

  4、相反数:①定义及表示法

  ②性质:A。a≠0时,a≠—a;B。a与—a在数轴上的位置;C。和为0,商为—1。

  5、数轴:①定义(“三要素”)

  ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

  6、奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n—1

  偶数:2n(n为自然数)

  7、绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

  二、实数的运算

  1、运算法则(加、减、乘、除、乘方、开方)

  2、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3、运算顺序:A。高级运算到低级运算;B。(同级运算)从“左”

  到“右”(如5÷ ×5);C。(有括号时)由“小”到“中”到“大”。

  三、应用举例(略)

  附:典型例题

  1、已知:a、b、x在数轴上的位置如下图,求证:│x—a│+│x—b│

  =b—a。

  2、已知:a—b=—2且ab<0,(a≠0,b≠0),判断a、b的符号。

  初三数学知识点第二章代数式

  重点代数式的有关概念及性质,代数式的运算

  ☆内容提要☆

  一、重要概念

  分类:

  1、代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

  的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2、整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3、单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的.代数式为对象。划分代数式类别时,是从外形来看。如,=x,=│x│等。

  4、系数与指数

  区别与联系:①从位置上看;②从表示的意义上看

  5、同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6、根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

  7、算术平方根

  ⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

  ⑵算术平方根与绝对值

  ①联系:都是非负数,=│a│

  ②区别:│a│中,a为一切实数;中,a为非负数。

  8、同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

初中数学知识点总结12

  初中数学例题的知识点梳理

  有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。【注】“大”减“小”是指绝对值的大小。

  合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

  去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

  恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

  平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

  因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

  “代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)

  单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

  一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

  一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

  分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

  最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

  特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(—,+),(—,—)和(+,—),四个象限分前后;X轴上y为0,x为0在Y轴。

  象限角的'平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

  平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

  对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

  自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

  函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

  一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

  二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

  巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:

  正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

  三角函数的增减性:正增余减。

  特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

  数字巧记:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(粮食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山药,六两)

  平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。

  梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。

  添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

  圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

  学霸分享的数学复习技巧

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c属于R,a≠0)根的判别,= b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的'问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

初中数学知识点总结13

  第一章图形的变换

  考点一、平移(3~5分)

  1、定义

  把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

  2、性质

  (1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动

  (2)连接各组对应点的线段平行(或在同一直线上)且相等。

  考点二、轴对称(3~5分)

  1、定义

  把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

  2、性质

  (1)关于某条直线对称的两个图形是全等形。

  (2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

  (3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  3、判定

  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  4、轴对称图形

  把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

  考点三、旋转(3~8分)

  1、定义

  把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  考点四、中心对称(3分)

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的.图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特征(3分)

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(-x,-y)

  2、关于x轴对称的点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,-y)

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(-x,y)

  第二章图形的相似

  考点一、比例线段(3分)

  1、比例线段的相关概念

  如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n

  在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。

  在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段

  若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。

  如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。

  2、比例的性质

  (1)基本性质

  ①a:b=c:dad=bc

  ②a:b=b:c

  (2)更比性质(交换比例的内项或外项)

  (交换内项)

  (交换外项)

  (同时交换内项和外项)

  (3)反比性质(交换比的前项、后项):

  (4)合比性质:

  (5)等比性质:

  3、黄金分割

  把线段ab分成两条线段ac,bc(ac>bc),并且使ac是ab和bc的比例中项,叫做把线段ab黄金分割,点c叫做线段ab的黄金分割点,其中ac=ab0.618ab

  考点二、平行线分线段成比例定理(3~5分)

  三条平行线截两条直线,所得的对应线段成比例。

  推论:

  (1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

  逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

  (2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。

  考点三、相似三角形(3~8分)

  1、相似三角形的概念

  对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。

  2、相似三角形的基本定理

  平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

  用数学语言表述如下:

  ∵de∥bc,∴△ade∽△abc

  相似三角形的等价关系:

  (1)反身性:对于任一△abc,都有△abc∽△abc;

  (2)对称性:若△abc∽△a’b’c’,则△a’b’c’∽△abc

  (3)传递性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,则△abc∽△a’’b’’c’’。

  3、三角形相似的判定

  (1)三角形相似的判定方法

  ①定义法:对应角相等,对应边成比例的两个三角形相似

  ②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  ③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

  ④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

  ⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似

  (2)直角三角形相似的判定方法

  ①以上各种判定方法均适用

  ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  ③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

  4、相似三角形的性质

  (1)相似三角形的对应角相等,对应边成比例

  (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比

  (3)相似三角形周长的比等于相似比

  (4)相似三角形面积的比等于相似比的平方。

  5、相似多边形

  (1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)

  (2)相似多边形的性质

  ①相似多边形的对应角相等,对应边成比例

  ②相似多边形周长的比、对应对角线的比都等于相似比

  ③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比

  ④相似多边形面积的比等于相似比的平方

  6、位似图形

  如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

  性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

  由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。

初中数学知识点总结14

  1、过两点有且只有一条直线

  2、两点之间线段最短

  3、同角或等角的补角相等——补角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

  8、如果两条直线都和第三条直线平行,这两条直线也互相平行

  9、同位角相等,两直线平行

  10、内错角相等,两直线平行

  11、同旁内角互补,两直线平行

  12、两直线平行,同位角相等

  13、两直线平行,内错角相等

  14、两直线平行,同旁内角互补

  15、定理

  xxx两边的和大于第三边

  16、推论

  xxx两边的差小于第三边

  17、xxx内角和定理:

  xxx三个内角的和等于180°

  18、推论1

  直角xxx的两个锐角互余

  19、推论2

  xxx的一个外角等于和它不相邻的两个内角的和

  20、推论3

  xxx的一个外角大于任何一个和它不相邻的内角

  21、全等xxx的对应边、对应角相等

  22、边角边公理(SAS):有两边和它们的夹角对应相等的两个xxx全等

  23、角边角公理(ASA):有两角和它们的夹边对应相等的

  两个xxx全等

  24、推论(AAS):有两角和其中一角的对边对应相等的两个xxx全等

  25、边边边公理(SSS):有三边对应相等的两个xxx全等

  26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角xxx全等

  27、定理1

  在角的平分线上的点到这个角的两边的距离相等

  28、定理2

  到一个角的两边的距离相同的点,在这个角的平分线上

  29、角的平分线是到角的两边距离相等的所有点的集合

  30、推论1

  等腰xxx顶角的平分线平分底边并且垂直于底边

  31、推论2

  等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;

  32、推论3

  等边xxx的各角都相等,并且每一个角都等于60°

  33、等腰xxx的判定定理

  如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

  34、等腰xxx的性质定理

  等腰xxx的两个底角相等

  (即等边对等角)

  35、推论1

  三个角都相等的xxx是等边xxx

  36、推论

  有一个角等于60°的等腰xxx是等边xxx

  37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38、直角xxx斜边上的中线等于斜边上的一半

  39、定理

  线段垂直平分线上的点和这条线段两个端点的距离相等

  40、逆定理

  和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  42、定理1

  关于某条直线对称的两个图形是全等形

  43、定理

  如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44、定理3

  两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45、逆定理

  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46、勾股定理

  直角xxx两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果xxx的三边长a、b、c有关系a2+b2=c2,那么这个xxx是直角xxx

  48、定理

  四边形的内角和等于360°

  49、四边形的外角和等于360°

  50、多边形内角和定理

  n边形的内角的和等于(n-2)×180°

  51、推论

  任意多边的外角和等于360°

  52、平行四边形性质定理1

  平行四边形的对角相等

  53、平行四边形性质定理2

  平行四边形的对边相等

  54、推论

  夹在两条平行线间的平行线段相等

  55、平行四边形性质定理3

  平行四边形的对角线互相平分

  56、平行四边形判定定理1

  两组对角分别相等的四边形是平行四边形

  57、平行四边形判定定理2

  两组对边分别相等的四边

  形是平行四边形

  58、平行四边形判定定理3

  对角线互相平分的四边形是平行四边形

  59、平行四边形判定定理4

  一组对边平行相等的四边形是平行四边形

  60、矩形性质定理1

  矩形的四个角都是直角

  61、矩形性质定理2

  矩形的对角线相等

  62、矩形判定定理1

  有三个角是直角的四边形是矩形

  63、矩形判定定理2

  对角线相等的平行四边形是矩形

  64、菱形性质定理1

  菱形的四条边都相等

  65、菱形性质定理2

  菱形的对角线互相垂直,并且每一条对角线平分一组对角

  66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四边都相等的四边形是菱形

  68、菱形判定定理2

  对角线互相垂直的平行四边形是菱形

  69、正方形性质定理1

  正方形的四个角都是直角,四条边都相等

  70、正方形性质定理2

  正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71、定理1

  关于中心对称的两个图形是全等的

  72、定理2

  关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73、逆定理

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74、等腰梯形性质定理

  等腰梯形在同一底上的两个角相等

  75、等腰梯形的两条对角线相等

  76、等腰梯形判定定理

  在同一底上的两个角相等的梯

  形是等腰梯形

  77、对角线相等的梯形是等腰梯形

  78、平行线等分线段定理

  如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79、推论1

  经过梯形一腰的`中点与底平行的直线,必平分另一腰

  80、推论2

  经过xxx一边的中点与另一边平行的直线,必平分第三边

  81、xxx中位线定理

  xxx的中位线平行于第三边,并且等于它的一半

  82、梯形中位线定理

  梯形的中位线平行于两底,并且等于两底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行线分线段成比例定理

  三条平行线截两条直线,所得的对应线段成比例

  87、推论

  平行于xxx一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88、定理

  如果一条直线截xxx的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于xxx的第三边

  89、平行于xxx的一边,并且和其他两边相交的直线,所截得的xxx的三边与原xxx三边对应成比例

  90、定理

  平行于xxx一边的直线和其他两边(或两边的延长线)相交,所构成的xxx与原xxx相似

  91、相似xxx判定定理1

  两角对应相等,两xxx相似(ASA)

  92、直角xxx被斜边上的高分成的两个直角xxx和原xxx相似

  93、判定定理2

  两边对应成比例且夹角相等,两xxx相似(SAS)

  94、判定定理3

  三边对应成比例,两xxx相似(SSS)

  95、定理

  如果一个直角xxx的斜边和一条直角边与另一个直角xxx的斜边和一条直角边对应成比例,那么这两个直角xxx相似(HL)

  96、性质定理1

  相似xxx对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97、性质定理2

  相似xxx周长的比等于相似比

  98、性质定理3

  相似xxx面积的比等于相似比的平方

  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圆是定点的距离等于定长的点的集合

  102、圆的内部可以看作是圆心的距离小于半径的点的集合

  103、圆的外部可以看作是圆心的距离大于半径的点的集合

  104、同圆或等圆的半径相等

  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

  107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  109、定理

  不在同一直线上的三点确定一个圆。

  110、垂径定理

  垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111、推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  112、推论2

  圆的两条平行弦所夹的弧相等

  113、圆是以圆心为对称中心的中心对称图形

  114、定理

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115、推论

  在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116、定理

  一条弧所对的圆周角等于它所对的圆心角的一半

  117、推论1

  同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118、推论2

  半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119、推论3

  如果xxx一边上的中线等于这边的一半,那么这个xxx是直角xxx

  120、定理

  圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  121、①直线L和⊙O相交

  0

  ②直线L和⊙O相切

  d=r

  ③直线L和⊙O相离

  d>r

  122、切线的判定定理

  经过半径的外端并且垂直于这条半径的直线是圆的切线

  123、切线的性质定理

  圆的切线垂直于经过切点的半径

  124、推论1

  经过圆心且垂直于切线的直线必经过切点

  125、推论2

  经过切点且垂直于切线的直线必经过圆心

  126、切线长定理

  从圆外一点引圆的两条切线相交与一点,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  127、圆的外切四边形的两组对边的和相等

  128、弦切角定理

  弦切角等于它所夹的弧对的圆周角?

  129、推论

  如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130、相交弦定理

  圆内的两条相交弦,被交点分成的两条线段长的积相等

  131、推论

  如果弦与直径垂直相交,那么弦的一半是它分直径xxx的两条线段的比例中项

  132、切割线定理

  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?

  133、推论

  从圆外一点引圆的两条割线,这一点到每条

  割线与圆的交点的两条线段长的积相等

  134、如果两个圆相切,那么切点一定在连心线上

  135、①两圆外离

  d>R+r

  ②两圆外切

  d=R+r

  ③两圆相交

  R-r<d<R+r(R>r)

  ④两圆内切

  d=R-r(R>r)

  ⑤两圆内含

  d<R-r(R>r)

  136、定理

  相交两圆的连心线垂直平分两圆的公共弦

  137、定理

  把圆平均分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138、定理

  任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  139、正n边形的每个内角都等于(n-2)×180°/n

  140、定理

  正n边形的半径和边心距把正n边形分成2n个全等的直角xxx

  141、正n边形的面积Sn=pn*rn/2

  p表示正n边形的周长

  142、正xxx面积√3a^2/4

  a表示边长

  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  144、弧长计算公式:L=n兀R/180——》L=nR

  145、扇形面积公式:S扇形=n兀R^2/360=LR/2

  146、内公切线长=d-(R-r)

  外公切线长=d-(R+r)

初中数学知识点总结15

  1、重心的定义:

  平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。

  2、几种几何图形的重心:

  ⑴线段的重心就是线段的中点;

  ⑵平行四边形及特殊平行四边形的重心是它的两条对角线的交点;

  ⑶三角形的三条中线交于一点,这一点就是三角形的重心;

  ⑷任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。

  提示:⑴无论几何图形的形状如何,重心都有且只有一个;

  ⑵从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。

  3、常见图形重心的性质:

  ⑴线段的重心把线段分为两等份;

  ⑵平行四边形的重心把对角线分为两等份;

  ⑶三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。

  上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的'复习学习数学知识。

  ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

  平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

  当x=-C/Ax2时,直线与圆相离;

【初中数学知识点总结】相关文章:

初中数学知识点总结08-13

初中数学知识点总结(荐)09-09

初中数学知识点总结【优选】08-14

(精华)初中数学知识点总结09-09

初中数学知识点08-27

[热]初中数学知识点总结15篇09-10

初中数学知识点总结优秀【15篇】08-14

初中数学知识点总结优秀(15篇)09-10

初中数学知识点总结精华15篇09-10

初中数学知识点总结15篇[集合]08-13