数学八年级上册知识点

时间:2026-01-09 07:05:28 数学

数学八年级上册知识点(通用15篇)

  在日常的学习中,大家都没少背知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。掌握知识点是我们提高成绩的关键!下面是小编收集整理的数学八年级上册知识点,欢迎阅读与收藏。

数学八年级上册知识点(通用15篇)

数学八年级上册知识点1

  初中数学全等三角形的判定定理

  ⑴边边边:三边对应相等的两个三角形全等、

  ⑵边角边:两边和它们的夹角对应相等的两个三角形全等、

  ⑶角边角:两角和它们的夹边对应相等的两个三角形全等、

  ⑷角角边:两角和其中一个角的对边对应相等的.两个三角形全等、

  ⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等

数学八年级上册知识点2

  因式分解

  1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

  3.公因式的确定:系数的公约数?相同因式的最低次幂.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

  (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式.

  6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

  7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式与分式统称有理式;即.

  3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

  4.分式的基本性质与应用:

  (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

  (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

  即

  (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

  5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

  6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

  7.分式的乘除法法则:.

  8.分式的乘方:.

  9.负整指数计算法则:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指数的运算法则都可用于负整指数计算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

  11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.

  12.同分母与异分母的分式加减法法则:.

  13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

  14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

  15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

  16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

  17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

  18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

  数的开方

  1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

  2.平方根的性质:

  (1)正数的平方根是一对相反数;

  (2)0的平方根还是0;

  (3)负数没有平方根.

  3.平方根的表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.

  4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0.

  5.三个重要非负数:a2≥0 ,|a|≥0,≥0 .注意:非负数之和为0,说明它们都是0.

  6.两个重要公式:

  (1) ; (a≥0)

  (2) .

  7.立方根的'定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.

  8.立方根的性质:

  (1)正数的立方根是一个正数;

  (2)0的立方根还是0;

  (3)负数的立方根是一个负数.

  9.立方根的特性:.

  10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

  11.实数:有理数和无理数统称实数.

  12.实数的分类:(1) (2) .

  13.数轴的性质:数轴上的点与实数一一对应.

  14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:.

  三角形

  几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

  1.三角形的角平分线定义:

  三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例:

  (1) ∵AD平分∠BAC

  ∴∠BAD=∠CAD

  (2) ∵∠BAD=∠CAD

  ∴AD是角平分线

  2.三角形的中线定义:

  在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

  几何表达式举例:

  (1) ∵AD是三角形的中线

  ∴ BD = CD

  (2) ∵ BD = CD

  ∴AD是三角形的中线

  3.三角形的高线定义:

  从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

  (如图)

  几何表达式举例:

  (1) ∵AD是ΔABC的高

  ∴∠ADB=90°

  (2) ∵∠ADB=90°

  ∴AD是ΔABC的高

  ※4.三角形的三边关系定理:

  三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

  几何表达式举例:

  (1) ∵AB+BC>AC

  ∴……………

  (2) ∵ AB-BC

  ∴……………

  5.等腰三角形的定义:

  有两条边相等的三角形叫做等腰三角形. (如图)

  几何表达式举例:

  (1) ∵ΔABC是等腰三角形

  ∴ AB = AC

  (2) ∵AB = AC

  ∴ΔABC是等腰三角形

  6.等边三角形的定义:

  有三条边相等的三角形叫做等边三角形. (如图)

  几何表达式举例:

  (1)∵ΔABC是等边三角形

  ∴AB=BC=AC

  (2) ∵AB=BC=AC

  ∴ΔABC是等边三角形

  7.三角形的内角和定理及推论:

  (1)三角形的内角和180°;(如图)

  (2)直角三角形的两个锐角互余;(如图)

  (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

  ※(4)三角形的一个外角大于任何一个和它不相邻的内角.

  (1) (2) (3)(4)几何表达式举例:

  (1) ∵∠A+∠B+∠C=180°

  ∴…………………

  (2) ∵∠C=90°

  ∴∠A+∠B=90°

  (3) ∵∠ACD=∠A+∠B

  ∴…………………

  (4) ∵∠ACD >∠A

  ∴…………………

  8.直角三角形的定义:

  有一个角是直角的三角形叫直角三角形.(如图)

  几何表达式举例:

  (1) ∵∠C=90°

  ∴ΔABC是直角三角形

  (2) ∵ΔABC是直角三角形

  ∴∠C=90°

  9.等腰直角三角形的定义:

  两条直角边相等的直角三角形叫等腰直角三角形.(如图)

  几何表达式举例:

  (1) ∵∠C=90° CA=CB

  ∴ΔABC是等腰直角三角形

  (2) ∵ΔABC是等腰直角三角形

  ∴∠C=90° CA=CB

  10.全等三角形的性质:

  (1)全等三角形的对应边相等;(如图)

  (2)全等三角形的对应角相等.(如图)

  几何表达式举例:

  (1) ∵ΔABC≌ΔEFG

  ∴ AB = EF ………

  (2) ∵ΔABC≌ΔEFG

  ∴∠A=∠E ………

  11.全等三角形的判定:

  “SAS”“ASA”“AAS”“SSS”“HL”. (如图)

  (3)几何表达式举例:

  (1) ∵ AB = EF

  ∵ ∠B=∠F

  又∵ BC = FG

  ∴ΔABC≌ΔEFG

  (2) ………………

  (3)在RtΔABC和RtΔEFG中

  ∵ AB=EF

  又∵ AC = EG

  ∴RtΔABC≌RtΔEFG

  12.角平分线的性质定理及逆定理:

  (1)在角平分线上的点到角的两边距离相等;(如图)

  (2)到角的两边距离相等的点在角平分线上.(如图)

  几何表达式举例:

  (1)∵OC平分∠AOB

  又∵CD⊥OA CE⊥OB

  ∴ CD = CE

  (2) ∵CD⊥OA CE⊥OB

  又∵CD = CE

  ∴OC是角平分线

  13.线段垂直平分线的定义:

  垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)

  几何表达式举例:

  (1) ∵EF垂直平分AB

  ∴EF⊥AB OA=OB

  (2) ∵EF⊥AB OA=OB

  ∴EF是AB的垂直平分线

  14.线段垂直平分线的性质定理及逆定理:

  (1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)

  (2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)

  几何表达式举例:

  (1) ∵MN是线段AB的垂直平分线

  ∴ PA = PB

  (2) ∵PA = PB

  ∴点P在线段AB的垂直平分线上

  15.等腰三角形的性质定理及推论:

  (1)等腰三角形的两个底角相等;(即等边对等角)(如图)

  (2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)

  (3)等边三角形的各角都相等,并且都是60°.(如图)

  (1) (2) (3)几何表达式举例:

  (1) ∵AB = AC

  ∴∠B=∠C

  (2) ∵AB = AC

  又∵∠BAD=∠CAD

  ∴BD = CD

  AD⊥BC

  ………………

  (3) ∵ΔABC是等边三角形

  ∴∠A=∠B=∠C =60°

  16.等腰三角形的判定定理及推论:

  (1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)

  (2)三个角都相等的三角形是等边三角形;(如图)

  (3)有一个角等于60°的等腰三角形是等边三角形;(如图)

  (4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)

  (1) (2)(3) (4)几何表达式举例:

  (1) ∵∠B=∠C

  ∴ AB = AC

  (2) ∵∠A=∠B=∠C

  ∴ΔABC是等边三角形

  (3) ∵∠A=60°

  又∵AB = AC

  ∴ΔABC是等边三角形

  (4) ∵∠C=90°∠B=30°

  ∴AC = AB

  17.关于轴对称的定理

  (1)关于某条直线对称的两个图形是全等形;(如图)

  (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)

  几何表达式举例:

  (1) ∵ΔABC、ΔEGF关于MN轴对称

  ∴ΔABC≌ΔEGF

  (2) ∵ΔABC、ΔEGF关于MN轴对称

  ∴OA=OE MN⊥AE

  18.勾股定理及逆定理:

  (1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)

  (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)

  几何表达式举例:

  (1) ∵ΔABC是直角三角形

  ∴a2+b2=c2

  (2) ∵a2+b2=c2

  ∴ΔABC是直角三角形

  19.RtΔ斜边中线定理及逆定理:

  (1)直角三角形中,斜边上的中线是斜边的一半;(如图)

  (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)

  几何表达式举例:

  (1) ∵ΔABC是直角三角形

  ∵D是AB的中点

  ∴CD = AB

  (2) ∵CD=AD=BD

  ∴ΔABC是直角三角形

  几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

  一基本概念:

  三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.

  二常识:

  1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.

  2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.

  3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.

  4.三角形能否成立的条件是:最长边<另两边之和.

  5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.

  6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如图,双垂图形中,有两个重要的性质,即:

  (1) AC?CB=CD?AB ; (2)∠1=∠B,∠2=∠A .

  8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.

  9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.

  10.等边三角形是特殊的等腰三角形.

  11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.

  12.符合“AAA”“SSA”条件的三角形不能判定全等.

  13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.

  14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.

  15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.

  16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.

  17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.

  ※18.几何重要图形和辅助线:

  (1)选取和作辅助线的原则:

  ①构造特殊图形,使可用的定理增加;

  ②一举多得;

  ③聚合题目中的分散条件,转移线段,转移角;

  ④作辅助线必须符合几何基本作图.

  (2)已知角平分线.(若BD是角平分线)

  ①在BA上截取BE=BC构造全等,转移线段和角;

  ②过D点作DE‖BC交AB于E,构造等腰三角形.

  (3)已知三角形中线(若AD是BC的中线)

  ①过D点作DE‖AC交AB于E,构造中位线;

  ②延长AD到E,使DE=AD

  连结CE构造全等,转移线段和角;

  ③ ∵AD是中线

  ∴SΔABD= SΔADC

  (等底等高的三角形等面积)

  (4)已知等腰三角形ABC中,AB=AC

  ①作等腰三角形ABC底边的中线AD

  (顶角的平分线或底边的高)构造全

  等三角形;

  ②作等腰三角形ABC一边的平行线DE,构造

  新的等腰三角形.

  (5)其它

  ①作等边三角形ABC

  一边的平行线DE,构造新的等边三角形;

  ②作CE‖AB,转移角;

  ③延长BD与AC交于E,不规则图形转化为规则图形;

  ④多边形转化为三角形;

  ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;

  ⑥若a‖b,AC,BC是角平

  分线,则∠C=90°.

数学八年级上册知识点3

  1、提公共因式法

  ※1、如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。这种分解因式的方法叫做提公因式法。

  如:

  ※2、概念内涵:

  (1)因式分解的最后结果应当是“积”;

  (2)公因式可能是单项式,也可能是多项式;

  (3)提公因式法的理论依据是乘法对加法的分配律,即:

  ※3、易错点点评:

  (1)注意项的符号与幂指数是否搞错;

  (2)公因式是否提“干净”;

  (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。

  2、运用公式法

  ※1、如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

  ※2、主要公式:

  (1)平方差公式:

  (2)完全平方公式:

  ¤3、易错点点评:

  因式分解要分解到底。如就没有分解到底。

  ※4、运用公式法:

  (1)平方差公式:

  ①应是二项式或视作二项式的多项式;

  ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

  ③二项是异号。

  (2)完全平方公式:

  ①应是三项式;

  ②其中两项同号,且各为一整式的平方;

  ③还有一项可正负,且它是前两项幂的底数乘积的2倍。

  3、因式分解的思路与解题步骤:

  (1)先看各项有没有公因式,若有,则先提取公因式;

  (2)再看能否使用公式法;

  (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

  (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

  (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

  4、分组分解法:

  ※1、分组分解法:利用分组来分解因式的方法叫做分组分解法。

  如:

  ※2、概念内涵:

  分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式。

  ※3、注意:分组时要注意符号的变化。

  5、十字相乘法:

  ※1、对于二次三项式,将a和c分别分解成两个因数的乘积,,,且满足,往往写成的形式,将二次三项式进行分解。

  如:

  ※2、二次三项式的分解:

  ※3、规律内涵:

  (1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同。

  (2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p。

  ※4、易错点点评:

  (1)十字相乘法在对系数分解时易出错;

  (2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确。

  人教版八年级上册数学学习方法

  歌诀记忆

  就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的.大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

  规律记忆

  即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。

  人教版八年级上册数学学习技巧

  养成良好的学习数学习惯

  多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  及时了解、掌握常用的数学思想和方法

  中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

  有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

  逐步形成“以我为主”的学习模式

  数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

数学八年级上册知识点4

  第十一章全等三角形

  1、全等三角形的性质:全等三角形对应边相等、对应角相等。

  2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

  3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

  4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

  第十二章轴对称

  1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

  2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  3、角平分线上的点到角两边距离相等。

  4、线段垂直平分线上的任意一点到线段两个端点的距离相等。

  5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  6、轴对称图形上对应线段相等、对应角相等。

  7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

  8、点(x,y)关于x轴对称的点的坐标为(x,—y)

  点(x,y)关于y轴对称的点的坐标为(—x,y)

  点(x,y)关于原点轴对称的点的坐标为(—x,—y)

  9、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

  等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

  10、等腰三角形的判定:等角对等边。

  11、等边三角形的三个内角相等,等于60°,

  12、等边三角形的判定:三个角都相等的三角形是等腰三角形。

  有一个角是60°的等腰三角形是等边三角形。

  有两个角是60°的三角形是等边三角形。

  13、直角三角形中,30°角所对的直角边等于斜边的一半。

  14、直角三角形斜边上的中线等于斜边的一半

  第十三章实数

  ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

  ※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

  ※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

  ※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

  数a的相反数是—a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

  第十四章一次函数

  1、画函数图象的`一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

  2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

  3、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

  5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:k="">0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  6、已知两点坐标求函数解析式(待定系数法求函数解析式):

  把两点带入函数一般式列出方程组

  求出待定系数

  把待定系数值再带入函数一般式,得到函数解析式

  7、会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

  第十五章整式的乘除与因式分解

  1、同底数幂的乘法

  ※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

  ⑤公式还可以逆用:(m、n均为正整数)

  2、幂的乘方与积的乘方

  ※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

  ※2、底数有负号时,运算时要注意,底数是a与(—a)时不是同底,但可以利用乘方法则化成同底,如将(—a)3化成—a3。

  ※3、底数有时形式不同,但可以化成相同。

  ※4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

  ※5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

  ※6、幂的乘方与积乘方法则均可逆向运用。

  3、整式的乘法

  ※(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

  ②相同字母相乘,运用同底数的乘法法则;

  ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  ④单项式乘法法则对于三个以上的单项式相乘同样适用;

  ⑤单项式乘以单项式,结果仍是一个单项式。

  ※(2)单项式与多项式相乘

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  单项式与多项式相乘时要注意以下几点:

  ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  ②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  ③在混合运算时,要注意运算顺序。

  ※(3)多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

  4、平方差公式

  ¤1、平方差公式:两数和与这两数差的积,等于它们的平方差,

  ※即。

  ¤其结构特征是:

  ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

  ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

  5、完全平方公式

  ¤1、完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

  ¤即;

  ¤口决:首平方,尾平方,2倍乘积在中央;

  ¤2、结构特征:

  ①公式左边是二项式的完全平方;

  ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

  ¤3、在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

  添括号法则:添正不变号,添负各项变号,去括号法则同样

  6、同底数幂的除法

  ※1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

  ※2、在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。

  ②任何不等于0的数的0次幂等于1,即,如,(—2.0=1),则00无意义。

  ③任何不等于0的数的—p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0—1,0—3都是无意义的;当a>0时,a—p的值一定是正的;当a<0时,a—p的值可能是正也可能是负的,如,

  ④运算要注意运算顺序。

  7、整式的除法

  ¤1、单项式除法单项式

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  ¤2、多项式除以单项式

  多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

  8、分解因式

  ※1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

  ※2、因式分解与整式乘法是互逆关系。

  因式分解与整式乘法的区别和联系:

  (1)整式乘法是把几个整式相乘,化为一个多项式;

  (2)因式分解是把一个多项式化为几个因式相乘。

数学八年级上册知识点5

  1 全等三角形的对应边、对应角相等

  2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

  3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

  4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

  5 边边边公理(SSS) 有三边对应相等的两个三角形全等

  6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

  7 定理1 在角的平分线上的点到这个角的'两边的距离相等

  8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

  9 角的平分线是到角的两边距离相等的所有点的集合

  10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

  11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

  12 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  13 推论3 等边三角形的各角都相等,并且每一个角都等于60°

  14 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  15 推论1 三个角都相等的三角形是等边三角形

  16 推论 2 有一个角等于60°的等腰三角形是等边三角形

  17 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  18 直角三角形斜边上的中线等于斜边上的一半

  19 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

  20 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  初二数学求定义域口诀

  求定义域有讲究,四项原则须留意。

  负数不能开平方,分母为零无意义。

  指是分数底正数,数零没有零次。

  限制条件不唯一,满足多个不等式。

  求定义域要过关,四项原则须注意。

  负数不能开平方,分母为零无意义。

  分数指数底正数,数零没有零次。

  限制条件不唯一,不等式组求解集。

  初中提高数学成绩诀窍

  很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

  初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

  只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

数学八年级上册知识点6

  数学重要知识点八年级上册汇集

  第十二章全等三角形

  一、知识框架:

  二、知识概念:

  1.基本定义:

  ⑴全等形:能够完全重合的两个图形叫做全等形.

  ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

  ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

  ⑷对应边:全等三角形中互相重合的边叫做对应边.

  ⑸对应角:全等三角形中互相重合的角叫做对应角.

  2.基本性质:

  ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

  ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

  3.全等三角形的判定定理:

  ⑴边边边(SSS):三边对应相等的两个三角形全等.

  ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.

  ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.

  ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.

  ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.

  4.角平分线:

  ⑴画法:

  ⑵性质定理:角平分线上的点到角的两边的距离相等.

  ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

  5.证明的基本方法:

  ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

  ⑵根据题意,画出图形,并用数字符号表示已知和求证.

  ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

  第十三章轴对称

  一、知识框架:

  二、知识概念:

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.

  ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形.

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.

  ②对称的图形都全等.

  ⑵线段垂直平分线的性质:

  ①线段垂直平分线上的点与这条线段两个端点的距离相等.

  ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

  ⑶关于坐标轴对称的点的坐标性质

  ①点P(x,y)关于x轴对称的点的坐标为P'(x,y).

  ②点P(x,y)关于y轴对称的点的坐标为P"(x,y).

  ⑷等腰三角形的性质:

  ①等腰三角形两腰相等.

  ②等腰三角形两底角相等(等边对等角).

  ③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).

  ⑸等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).

  3.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

  ⑵等边三角形的判定:

  ①三条边都相等的三角形是等边三角形.

  ②三个角都相等的三角形是等边三角形.

  ③有一个角是60°的等腰三角形是等边三角形.

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

  八年级上册数学知识点总结

  因式分解

  1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的`两个转化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

  3.公因式的确定:系数的公约数?相同因式的最低次幂.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+ b)(a- b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

  (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式.

  6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

  7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式? ”.

  分式

  1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式.

  2.有理式:整式与分式统称有理式;即.

  3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

  4.分式的基本性质与应用:

  (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

  (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

  即

  (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

  5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

  6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

  7.分式的乘除法法则:.

  8.分式的乘方:.

  9.负整指数计算法则:

  (1)公式:a0=1(a≠0), a-n= (a≠0);

  (2)正整指数的运算法则都可用于负整指数计算;

  (3)公式:,;

  (4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

  11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.

  12.同分母与异分母的分式加减法法则:.

  13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

  14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

  15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

  16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

  17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

  18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

  数的开方

  1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

  2.平方根的性质:

  (1)正数的平方根是一对相反数;

  (2)0的平方根还是0;

  (3)负数没有平方根.

  3.平方根的表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.

  4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0.

  5.三个重要非负数:a2≥0 ,|a|≥0,≥0 .注意:非负数之和为0,说明它们都是0.

  6.两个重要公式:

  (1) ; (a≥0)

  (2) .

  7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.

  8.立方根的性质:

  (1)正数的立方根是一个正数;

  (2)0的立方根还是0;

  (3)负数的立方根是一个负数.

  9.立方根的特性:.

  10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

  11.实数:有理数和无理数统称实数.

  12.实数的分类:(1) (2) .

  13.数轴的性质:数轴上的点与实数一一对应.

  14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:.

  三角形

  几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

  1.三角形的角平分线定义:

  三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例:

  (1) ∵AD平分∠BAC

  ∴∠BAD=∠CAD

  (2) ∵∠BAD=∠CAD

  ∴AD是角平分线

  2.三角形的中线定义:

  在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

  几何表达式举例:

  (1) ∵AD是三角形的中线

  ∴ BD = CD

  (2) ∵ BD = CD

  ∴AD是三角形的中线

  3.三角形的高线定义:

  从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

  (如图)

  几何表达式举例:

  (1) ∵AD是ΔABC的高

  ∴∠ADB=90°

  (2) ∵∠ADB=90°

  ∴AD是ΔABC的高

  ※4.三角形的三边关系定理:

  三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

  几何表达式举例:

  (1) ∵AB+BC>AC

  ∴……………

  (2) ∵ AB-BC

  ∴……………

  5.等腰三角形的定义:

  有两条边相等的三角形叫做等腰三角形. (如图)

  几何表达式举例:

  (1) ∵ΔABC是等腰三角形

  ∴ AB = AC

  (2) ∵AB = AC

  ∴ΔABC是等腰三角形

  6.等边三角形的定义:

  有三条边相等的三角形叫做等边三角形. (如图)

  几何表达式举例:

  (1)∵ΔABC是等边三角形

  ∴AB=BC=AC

  (2) ∵AB=BC=AC

  ∴ΔABC是等边三角形

  7.三角形的内角和定理及推论:

  (1)三角形的内角和180°;(如图)

  (2)直角三角形的两个锐角互余;(如图)

  (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

  ※(4)三角形的一个外角大于任何一个和它不相邻的内角.

  (1) (2) (3)(4)几何表达式举例:

  (1) ∵∠A+∠B+∠C=180°

  ∴…………………

  (2) ∵∠C=90°

  ∴∠A+∠B=90°

  (3) ∵∠ACD=∠A+∠B

  ∴…………………

  (4) ∵∠ACD >∠A

  ∴…………………

  8.直角三角形的定义:

  有一个角是直角的三角形叫直角三角形.(如图)

  几何表达式举例:

  (1) ∵∠C=90°

  ∴ΔABC是直角三角形

  (2) ∵ΔABC是直角三角形

  ∴∠C=90°

  9.等腰直角三角形的定义:

  两条直角边相等的直角三角形叫等腰直角三角形.(如图)

  几何表达式举例:

  (1) ∵∠C=90° CA=CB

  ∴ΔABC是等腰直角三角形

  (2) ∵ΔABC是等腰直角三角形

  ∴∠C=90° CA=CB

  10.全等三角形的性质:

  (1)全等三角形的对应边相等;(如图)

  (2)全等三角形的对应角相等.(如图)

数学八年级上册知识点7

  1、实数的概念及分类

  ①实数的分类

  ②无理数

  无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  开方开不尽的数,如 √7 ,3 √2等;

  有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;

  有特定结构的数,如0.1010010001…等;

  某些三角函数值,如sin60°等

  2、实数的倒数、相反数和绝对值

  ①相反数

  实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

  ②绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  ③倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

  ④数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ⑤估算

  3、平方根、算数平方根和立方根

  ①算术平方根

  一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

  ②平方根

  一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的.平方根(或二次方根)。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。

  表示方法:记作 3 √a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

  4、实数大小的比较

  ①实数比较大小

  正数大于零,负数小于零,正数大于一切负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  ②实数大小比较的几种常用方法

  数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比较法:设a、b是两正实数,

  绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

  平方法:设a、b是两负实数,则 a2>b2a<b 。

  5、算术平方根有关计算(二次根式)

  ①含有二次根号“ √ ”;被开方数a必须是非负数。

  ②性质:

  ③运算结果若含有“ √ ”形式,必须满足:

  被开方数的因数是整数,因式是整式

  被开方数中不含能开得尽方的因数或因式

  6、实数的运算

  ①六种运算:加、减、乘、除、乘方 、开方。

  ②实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  ③运算律

  加法交换律 a+b= b+a

  加法结合律 (a+b)+c= a+( b+c )

  乘法交换律 ab= ba

  乘法结合律 (ab)c = a( bc )

  乘法对加法的分配律 a( b+c )=ab+ac

数学八年级上册知识点8

  三角形知识点

  一、知识框架:

  二、知识概念:

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

  5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  8.多边形的内角:多边形相邻两边组成的角叫做它的内角。

  9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

  12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

  13.公式与性质:

  ⑴三角形的内角和:三角形的内角和为180°

  ⑵三角形外角的性质:

  性质1:三角形的一个外角等于和它不相邻的两个内角的和。

  性质2:三角形的一个外角大于任何一个和它不相邻的内角。

  ⑶多边形内角和公式:边形的内角和等于·180°

  ⑷多边形的外角和:多边形的外角和为360°。

  ⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线。

  轴对称

  一、知识框架:

  二、知识概念:

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

  ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形。

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

  ②对称的图形都全等。

  ⑵线段垂直平分线的性质:

  ①线段垂直平分线上的点与这条线段两个端点的距离相等。

  ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

  ⑶关于坐标轴对称的点的坐标性质。

  ⑷等腰三角形的性质:

  ①等腰三角形两腰相等。

  ②等腰三角形两底角相等(等边对等角)。

  ③等腰三角形的顶角角平分线、底边上的`中线,底边上的高相互重合。

  ④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

  ⑸等边三角形的性质:

  ①等边三角形三边都相等。

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一。

  ④等边三角形是轴对称图形,对称轴是三线合一(3条)。

  3.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形。

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

  ⑵等边三角形的判定:

  ①三条边都相等的三角形是等边三角形。

  ②三个角都相等的三角形是等边三角形。

  ③有一个角是60°的等腰三角形是等边三角形。

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

  (等边三角形)知识点回顾

  1、等边三角形的性质:

  等边三角形的三个角都相等,并且每一个角都等于600。

  2、等边三角形的判定:

  ①三个角都相等的三角形是等边三角形。

  ②有一个角是600的等腰三角形是等边三角形。

  3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

  1、等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  (2)等腰三角形的其他性质:

  ①等腰直角三角形的两个底角相等且等于45°

  ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  ③等腰三角形的三边关系:设腰长为a,底边长为b,则

  ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

  2、等腰三角形的判定

  等腰三角形的判定定理及推论:

  定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

  推论1:三个角都相等的三角形是等边三角形。

  推论2:有一个角是60°的等腰三角形是等边三角形。

  推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

数学八年级上册知识点9

  1.提公共因式法

  ※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

  如:

  ※2.概念内涵:

  (1)因式分解的最后结果应当是“积”;

  (2)公因式可能是单项式,也可能是多项式;

  (3)提公因式法的理论依据是乘法对加法的分配律,即:

  ※3.易错点点评:

  (1)注意项的符号与幂指数是否搞错;

  (2)公因式是否提“干净”;

  (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

  2.运用公式法

  ※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

  ※2.主要公式:

  (1)平方差公式:

  (2)完全平方公式:

  ¤3.易错点点评:

  因式分解要分解到底.如就没有分解到底.

  ※4.运用公式法:

  (1)平方差公式:

  ①应是二项式或视作二项式的多项式;

  ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

  ③二项是异号.

  (2)完全平方公式:

  ①应是三项式;

  ②其中两项同号,且各为一整式的平方;

  ③还有一项可正负,且它是前两项幂的底数乘积的2倍.

  3.因式分解的思路与解题步骤:

  (1)先看各项有没有公因式,若有,则先提取公因式;

  (2)再看能否使用公式法;

  (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

  (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

  (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

  4.分组分解法:

  ※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.

  如:

  ※2.概念内涵:

  分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

  ※3.注意:分组时要注意符号的变化.

  5.十字相乘法:

  ※1.对于二次三项式,将a和c分别分解成两个因数的乘积,且满足,往往写成的.形式,将二次三项式进行分解.

  如:

  ※2.二次三项式的分解:

  ※3.规律内涵:

  (1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

  (2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.

  ※4.易错点点评:

  (1)十字相乘法在对系数分解时易出错;

  (2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.

  八年级数学学习方法

  1.必须熟悉各种基本题型并掌握其解法。

  课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。

  2.在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

  数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌 握了更多的思维方法,为做综合题奠定了一定的基础。

  3.多做综合题。

  综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。

  八年级数学学习技巧

  初中数学的快速记忆法之歌诀记忆

  就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

数学八年级上册知识点10

  一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫做一次函数。当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

  一次函数的图象及性质

  一次函数y=kx+b的图象是经过(0,b)和(—b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;当b<0时,向下平移)

  (1)解析式:y=kx+b(k、b是常数,k≠0)

  (2)必过点:(0,b)和(—b/k,0)

  (3)走向:k>0,图象经过第一、三象限;

  k<0,图象经过第二、四象限

  b>0,图象经过第一、二象限;

  b<0,图象经过第三、四象限

  k>0,b>0;<=>直线经过第一、二、三象限

  K<0,b>0;<=>直线经过第一、二、四象限

  K<0,b<0;<=>直线经过第二、三、四象限

  (4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小。

  (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

  (6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;

  当b<0时,将直线y=kx的图象向下平移b个单位。

  直线y=k1x+b1与y=k2x+b2的位置关系

  (1)两直线平行:k1=k2且b1≠b2

  (2)两直线相交:k1≠k2

  (3)两直线重合:k1=k2且b1=b2

  确定一次函数解析式的方法

  (1)根据已知条件写出含有待定系数的函数解析式;

  (2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;

  (3)解方程得出未知系数的值;

  (4)将求出的待定系数代回所求的函数解析式中得出结果。

  函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题。建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

  正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线。这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义。从图象中获取的信息一般是:

  (1)从函数图象的'形状判定函数的类型;

  (2)从横、纵轴的实际意义理解图象上点的坐标的实际意义。解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数。

  用函数观点看方程(组)与不等式

  一元一次方程与一次函数的关系

  任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值。从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值。

  一次函数与一元一次不等式的关系

  任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围。

  一次函数与二元一次方程组

  (1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=—(a/b)x++c/b的图象相同。

  (2)二元一次方程组

  a1x+b1y=c1,a2x+b2y=c2;的解可以看作是两个一次函数y=(a1/b1)x+c1/b1和y=—(a2/b2)x+c2/b2的图像交点。

数学八年级上册知识点11

  1、二元一次方程

  ①二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  ②二元一次方程的解

  适合一个二元一次方程的'一组未知数的值,叫做这个二元一次方程的一个解。

  2、二元一次方程组

  ①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  ②二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  ③二元一次方程组的解法

  代入(消元)法

  加减(消元)法

  ④一次函数与二元一次方程(组)的关系:

  一次函数与二元一次方程的关系:

  直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

  一次函数与二元一次方程组的关系:

  二元一次方程组

  的解可看作两个一次函数

  和 的图象的交点。

  当函数图象有交点时,说明相应的二元一次方程组有解;

  当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

数学八年级上册知识点12

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  第七章知识点

  1、二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  2、二元一次方程的'解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  3、二元一次方程组

  含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  4、二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  5、二元一次方程组的解法

  (1)代入(消元)法(2)加减(消元)法

  第八章知识点

  1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

  2、平均数

  (2)加权平均数:

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

数学八年级上册知识点13

  1、确定位置

  在平面内,确定物体的位置一般需要两个数据。

  2、平面直角坐标系及有关概念

  ①平面直角坐标系

  在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  ②坐标轴和象限

  为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

  ③点的坐标的概念

  对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

  平面内点的与有序实数对是一一对应的。

  ④不同位置的点的坐标的特征

  a、各象限内点的坐标的特征

  点P(x,y)在第一象限→ x>0,y>0

  点P(x,y)在第二象限 → x<0,y>0

  点P(x,y)在第三象限 → x<0,y<0

  点P(x,y)在第四象限 → x>0,y<0

  b、坐标轴上的点的特征

  点P(x,y)在x轴上 → y=0,x为任意实数

  点P(x,y)在y轴上 → x=0,y为任意实数

  点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

  c、两条坐标轴夹角平分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

  点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

  d、和坐标轴平行的直线上点的坐标的特征

  位于平行于x轴的.直线上的各点的纵坐标相同。

  位于平行于y轴的直线上的各点的横坐标相同。

  e、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

  点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

  点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

  f、点到坐标轴及原点的距离

  点P(x,y)到坐标轴及原点的距离:

  点P(x,y)到x轴的距离等于 ∣y∣

  点P(x,y)到y轴的距离等于 ∣x∣

  点P(x,y)到原点的距离等于 √x2+y2

  3、坐标变化与图形变化的规律

数学八年级上册知识点14

  初二上册数学第一章知识点

  一.定义

  1.全等形:形状大小相同,能完全重合的两个图形.

  2.全等三角形:能够完全重合的两个三角形.

  二.重点

  1.平移,翻折,旋转前后的图形全等.

  2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.

  3.全等三角形的判定:

  SSS三边对应相等的两个三角形全等[边边边]

  SAS两边和它们的夹角对应相等的两个三角形全等[边角边]

  ASA两角和它们的夹边对应相等的两个三角形全等[角边角]

  AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]

  HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]

  4.角平分线的性质:角的平分线上的点到角的两边的距离相等.

  5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.

  八年级上册期末数学知识点归纳

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

  4.通分的依据:分式的基本性质.

  5.通分的关键:确定几个分式的公分母.

  通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

  6.类比分数的通分得到分式的`通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

  9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

  10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

  11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

  12.作为最后结果,如果是分式则应该是最简分式.

  八年级上册数学知识点

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。

数学八年级上册知识点15

  全等三角形的对应边、对应角相等

  2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  3角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

  4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  5边边边公理(SSS)有三边对应相等的两个三角形全等

  6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  7定理1在角的平分线上的点到这个角的两边的距离相等

  8定理2到一个角的两边的距离相同的点,在这个角的平分线上

  9角的平分线是到角的两边距离相等的所有点的集合

  10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  23推论3等边三角形的各角都相等,并且每一个角都等于60°

  24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  25推论1三个角都相等的三角形是等边三角形

  26推论2有一个角等于60°的等腰三角形是等边三角形

  27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  28直角三角形斜边上的中线等于斜边上的一半

  29定理线段垂直平分线上的点和这条线段两个端点的距离相等

  30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  32定理1关于某条直线对称的两个图形是全等形

  33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  37勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  38定理四边形的内角和等于360°

  39四边形的外角和等于360°

  40多边形内角和定理n边形的内角的和等于(n-2)×180°

  41推论任意多边的外角和等于360°

  42平行四边形性质定理1平行四边形的对角相等

  43平行四边形性质定理2平行四边形的对边相等

  44推论夹在两条平行线间的平行线段相等

  45平行四边形性质定理3平行四边形的`对角线互相平分

  46平行四边形判定定理1两组对角分别相等的四边形是平行四边形

  47平行四边形判定定理2两组对边分别相等的四边形是平行四边形

  48平行四边形判定定理3对角线互相平分的四边形是平行四边形

  49平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  50矩形性质定理1矩形的四个角都是直角

  51矩形性质定理2矩形的对角线相等

  52矩形判定定理1有三个角是直角的四边形是矩形

  53矩形判定定理2对角线相等的平行四边形是矩形

  54菱形性质定理1菱形的四条边都相等

  55菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

  56菱形面积=对角线乘积的一半,即S=(a×b)÷2

  57菱形判定定理1四边都相等的四边形是菱形

  58菱形判定定理2对角线互相垂直的平行四边形是菱形

  59正方形性质定理1正方形的四个角都是直角,四条边都相等

  60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  61定理1关于中心对称的两个图形是全等的

  62定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  64等腰梯形性质定理等腰梯形在同一底上的两个角相等

  65等腰梯形的两条对角线相等

  66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  67对角线相等的梯形是等腰梯形

  68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  69推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  70推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  71三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  72梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

  73 (1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d

  74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

  75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  76平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

  77推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  78定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  79平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  80定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  81相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  82直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  83判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  84判定定理3三边对应成比例,两三角形相似(SSS)

  85定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  86性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  87性质定理2相似三角形周长的比等于相似比

  88性质定理3相似三角形面积的比等于相似比的平方

  89任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

【数学八年级上册知识点】相关文章:

八年级上册数学知识点12-24

八年级上册数学函数知识点12-03

八年级上册数学重要知识点12-04

八年级上册数学复习知识点01-12

数学八年级上册知识点精选15篇01-07

八年级数学上册知识点01-08

八年级上册数学知识点(精华)01-16

【优选】八年级上册数学知识点01-16

(热)八年级上册数学知识点01-09

八年级数学上册知识点总结09-20