一元一次不等式的教学反思

时间:2025-09-14 07:59:43 教学反思

一元一次不等式的教学反思

  作为一位到岗不久的教师,我们要有一流的教学能力,借助教学反思可以快速提升我们的教学能力,那么什么样的教学反思才是好的呢?以下是小编精心整理的一元一次不等式的教学反思,欢迎阅读与收藏。

一元一次不等式的教学反思

一元一次不等式的教学反思1

  在初一的学习阶段,我们已经接触并学习了基础的一元一次方程、一元一次不等式以及二元一次方程组的相关知识。而在《用函数观点看方程(组)与不等式》这一章节中,我们被引导以一种全新的视角——即函数的观点——来重新审视、理解和分析这些数学概念。这种转变不仅加深了我们对一元一次方程、一元一次不等式和二元一次方程组的理解,而且还帮助我们建立起更深层次的数学思维模式。通过将这些数学问题置于函数的框架内,我们可以更加直观地观察到变量之间的关系、变化趋势以及它们如何相互作用,从而更好地解决实际问题。这种以函数为工具的思考方式,不仅拓展了我们的数学视野,也为我们后续学习更高级的数学知识打下了坚实的基础。

  在复习导入过程中,我给出一个一元一次不等式的的题目:3x—2>x+2。同学们都笑开了花,有同学说:“这么容易,老师,我们已经不是初一的小孩子了。”也有同学直接说出这个不等式的解。这时,我提出了问题:“谁能把刚刚学习的一次函数和这个不等式联系到一起?同学们可以大胆想象。”由于学过利用函数观点看方程,有很多同学反映比较快,说:“画两个一次函数y=3x—2和y=x+2的图像,然后再观察”。我按照他的思路讲解了这种方法,同时提出还有没有更简单的方法,引导同学通过一个函数图像来解决问题。

  在这堂课程接近尾声之际,一个学生提出了一个颇有见地的.问题:“老师,为什么我们不能用初一阶段所学的知识来解决当前的问题呢?为何要引入更复杂的方法?”这是一个值得深思的问题,它揭示了学习过程中的一个关键点——进阶与深化。实际上,这节课的设计初衷在于引导大家掌握一种更为全面的思考方式——数形结合思想。通过引入更加复杂且具有挑战性的题目,我们旨在帮助大家跳出原有的知识框架,探索不同领域间的联系与交互。这样做不仅能够加深对现有知识的理解,还能够激发创新思维,为将来更深入的学习和研究打下坚实的基础。因此,看似繁复的过程,实则蕴含着推动个人能力提升与视野扩大的重要价值。

一元一次不等式的教学反思2

  今天的学习内容一次函数与一元一次不等式是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b>0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+b在x轴上方的部分x的取值范围,同样的,求不等式ax+b<0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+b在x轴下方的`部分x的取值范围。

  在今天早上我们几个老师的共同研究下,我的设计教学程序时,作了如下安排:用图象法求方程2x—6=0的解,进而研究求不等式2x—6>0的解集,转化为求x为何值时,函数y=2x—6的值大于0,转化为求x为何值时,直线y=2x—6在x轴上方,在此基础上进行练习前置学习的训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n>0的解集,不等式mx+n<0的解集,例题2的教学是本课难点,每个老师在课堂上用各种不同的方法进行分析,协助学生理解。

  陶老师在教研课上的处理方法很好,由学生分析,取x的值计算函数值进行比较,评课交流时,老师们提出还可以列举更多的x的值进行计算比较,学生理解起来更为便利,在这个问题上,我在辅导学生时,从交点出发通过函数的增减性研究解读,感觉学习困难的学生还是好理解的,在下一课的课上,用这样的分析方法再做辅导,看效果应该可以的。不断地学习,不断地实践,不断地提高。

一元一次不等式的教学反思3

  一元一次不等式组的解法教学反思

  1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,一元一次不等式组的解法教学反思。整个流程比较流畅、自然;

  2、精心处理教材:我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的.解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备;

  3、能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节同学区分了解一元一次不等式组其实和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定;

  4、在对整节课的时间把握上有所欠缺,致使拖了堂,当然这也存在着经验不足,在做课件时没预先设计的问题;如果我再上一次这个内容我会把探究活动直接作为学生课后探究的问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用;

  5、在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。

一元一次不等式的教学反思4

  一元一次不等式(组) 的主要内容是一元一次不等式解法及其简单应用。 这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的.兴趣与自信心。

  而不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。

  在课前,我做了很多的准备,对我所教的学生会出现什么样的情况,我都做到了心中有数。满以为自己可以打一个漂亮的战役。

  当我开始上课时,情况真的出乎我的意料。学生们不但一点都不配合,而且好像对这部分知识掌握的不是很理想,虽然我费尽脑汁想尽办法去让学生动起来,可收效甚微。我想我们上课的目的就是让孩子变得有个性,变得能积极主动发言。到底我错在什么地方了呢?

  经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。

  通过这节课,让我在教学的道路上又成长了许多。使我明白了怎么更能上好一节数学课

一元一次不等式的教学反思5

  本节课较好的方面:

  1、本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

  2、课程内容前后呼应,前面练习能够为后面的例题作准备。

  3、能安排有当堂训练等对学生学习的知识进行检查;

  不足方面:

  1、引入部分练习所用时间太长,讲评一元一次不等式的概念太繁琐,导致了后段时间不够,部分内容不能完成。

  2、课容量少,害怕学生听不懂、学不会,所以上课时喜欢给学生反复讲,结果课堂上大部分时间由我占据而留给学生自由思考的时间较少。

  3、对于后进生,课堂上由于时间的关系,很少关注。

  感悟:只有当学生真正获得了课堂上属于自己学习的主权时,他们个性的形成与个体的`发展才有了可能。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,我将和我的学生在这一探索过程中不断努力前行,总之,我在课堂上还是要尝试着少说,给学生留些自由发展的空间。但在课前,教师必须做足课堂的准备工作。

一元一次不等式的教学反思6

  在完成了对不等式性质的学习之后,接下来的内容转向了探讨实际问题与一元一次不等式之间的联系。在快速翻阅这一章节时,我确实感受到了一种不适应的感觉。作者在这部分着重阐述了两个核心议题:在修改后的版本中,保持了原文的核心思想,即在学习了不等式的性质后,进入了实际问题与一元一次不等式的研究领域,并指出了作者关注的两大主题。这样的修改既保持了简洁性,又确保了内容的.原创性。

  (1)如何根据实际问题列不等式,这是贯穿全章的中心问题。

  (2)如何解不等式?这节重点比较解一元一次不等式与解一元一次方程的一般步骤。

  可是,学生学完了不等式的性质,只会根据不等式的性质解最简单的不等式,如6x<5x+4,-2x>6等等,一些复杂的不等式还不会解,因此,有必要根据不等式的性质得出移项法则,有分母的不等式利用、去括号、移项。合并同类项、系数化为一去解,就像解一元一次方程方程一样,我对教材进行了调整,先学怎样解不等式,再学列一元一次不等式解应用题,这样既降低了难度,又分散了难点,由于和一元一次方程对比着学,学生更容易接受,其实,最关键的一点是系数化为一这步,当不等式两边乘(或除)同一个负数时,不等号的方向要改变,>要变成<,<要变成>,其余和解一元一次方程一样。

一元一次不等式的教学反思7

  不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。

  现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。

  不等式的基本性质的教学,是分成两个阶段进行的。对不等式的`基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。

  不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。

  解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。

  在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

一元一次不等式的教学反思8

  《实际问题与一元一次不等式》是一节有难度的重量级实际应用课。在本节课的教学中,我先以购票问题送学生一个惊喜,让学生感受了数学魅力,激发了探究兴趣;同时又复习了不等式的性质,为解不等式要变号埋下伏笔。在较复杂的超市购物获得优惠的问题中,设计试购活动精彩纷呈,前二件商品的试购既让学生深入理解题意,体验优惠这一基本事实,又使分类讨论呼之欲出;后二件商品的试购既让学生的猜测不断清晰,又引发第二次分类,同时呈现方程与不等式,为类比提供了平台。通过修改关系符号类比方程解不等式,并进一步挑战带有中括号的不等式的解法,实现跨越发展。而最后购车问题内化前面的知识与技能,同时又探究不等式的解如何转化为实际问题的解。三个问题层次分明,一线串珠,让数学的魅力在学生心中不断加深,数学源于生活又服务于生活的感悟不断积淀。而秘籍的总结形式增加趣味的同时,加深学生建模印象。

  改进之处:因在演播室录课,面对镜头与灯光,学生有些拘谨。由于时间关系,在表达本课感受时没有让更多的`学生参入,结尾有些仓促。在以后的教学中,我将关注学生的学习动态,随时注意学生专注性及学习习惯的培养。

一元一次不等式的教学反思9

  课后随笔学完了不等式的性质,紧接着就是实际问题与一元一次不等式,浏览了一遍实际问题与一元一次不等式这一节后,总觉得很别扭,编者意图是本节重点讨论两方面的问题:

  (1)如何根据实际问题列不等式,这是贯穿全章的中心问题。

  (2)如何解不等式?这节重点比较解一元一次不等式与解一元一次方程的'一般步骤。

  可是,学生学完了不等式的性质,只会根据不等式的性质解最简单的不等式,如6x<5x+4,-2x>6等等,一些复杂的不等式还不会解,因此,有必要根据不等式的性质得出移项法则,有分母的不等式利用、去括号、移项。合并同类项、系数化为一去解,就像解一元一次方程方程一样,我对教材进行了调整,先学怎样解不等式,再学列一元一次不等式解应用题,这样既降低了难度,又分散了难点,由于和一元一次方程对比着学,学生更容易接受,其实,最关键的一点是系数化为一这步,当不等式两边乘(或除)同一个负数时,不等号的方向要改变,>要变成<,<要变成>,其余和解一元一次方程一样。

一元一次不等式的教学反思10

  不等式作为一种强有力的数学工具,能够精确描述现实世界中不同量之间的相对大小关系。而一元一次不等式,作为不等式体系中的基石,它不仅揭示了简单却普遍的量与量之间的不等关系,而且是后续学习更多数学概念和理论的基础。通过一元一次不等式的理解和应用,学生们能够建立起解决实际问题的能力,进一步探索更复杂的数学领域。

  现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。

  不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。

  在教授不等式的根本属性时,采取对比方法能显著提升学习效果。学生先前已经学习了等式及其属性,为了帮助他们更好地理解不等式的特性,我们应当将两者进行比较。等式的规则指出,若在等式的`两边分别加、减、乘、除同一个数值(前提是该数值非零),则结果仍保持等式状态。这里的数值可以是正数、负数或零。与此相对照,不等式的操作则揭示了不同规则:在不等式的两边进行加、减、乘、除(前提同样是非零)操作时,不等号的方向会根据所使用的数值类型而变化。具体而言,若使用的是正数,不等号方向保持不变;若是负数,则不等号方向反转;当数值为零时,不等式性质不受影响。通过这种对比方式,不仅可以复习等式的相关知识,还能作为引入新课的桥梁,同时有助于学生掌握不等式的根本属性。

  解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。

  在使用不等式的根本属性对不等式进行变化时,学生们在处理两边为明确数值的情形时,通常较为轻松。这是由于此类操作本质上等同于有理数大小的判断。然而,当面对两边由含字母的代数式构成的不等式,并且需要依据给出的条件来决定它们之间的大小关系或不等符号的方向时,情况则变得复杂许多。在此类问题的教学过程中,采用讨论法是一种非常有效的策略。通过讨论,学生能够全面表达他们的观点和理解,从而有助于识别问题的关键所在,针对性地找到解决方法,同时加深对不等式基本属性的理解。

  本节课,我认为在教学目标的实现上,整体效果较为满意。在关键点的识别与难题的解决上,我也取得了较好的成果。在教学实践中,学生的参与度高,课堂氛围积极且充满活力。然而,教学过程中仍存在一些不足之处,我将在未来的教学工作中,不断精进教学方法,逐步提升教学质量。

一元一次不等式的教学反思11

  例1:请画出函数y=-3x+12的图像,你能利用图像解决下列问题吗?

  (1)方程-3x+12=0的解(2)不等式-3x+12>0的解集.

  (3)如果y的值在-6≤y≤6的范围内,那么相应的`x的值在什么范围内?

  问题一提出,就有学生不假思索,答案脱口而出,前两问也太简单了吧?我提醒学生注意题目要求,这时有学生开始画函数图像。让学生自己动手,画出一次函数y=-3x+12的图像,目的是让学生从画图的过程中感受从左至右,直线是呈“下降”趋势的。即y随x的增大而减小。对于前两问,学生还比较好理解,但到第3问,有些学生就找不到答案了。这时就要引导学生从第2问,开始延伸,当解-3x+12>0,即函数值为正数时,对应的函数的图像在x轴的上方,y>0时,坐标系中表示的是一个平面区域,在这个区域中找出对应的自变量x的取值范围即为不等式的解。让学生对第3问,再次进行探究,由图像找出函数值在-6--6之间的部分,对应地可以找出自变量x的取值范围。要求学生能在函数图像上找到这个区域,老师再用多媒体进行动态演示。进一步激发学生思考,你能用其他方法解决这个问题吗?学生能联想到第3问也可以利用解不等式组的方法求出x的取值范围。通过本题的解决,让学生初步感受不等式与方程、函数的内在联系

一元一次不等式的教学反思12

  在讲完不等式的性质后,我们根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的.表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时:一元一次不等式的应用。

  在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣,动笔解答。

  但是巡堂时发现出现以下问题:

  一、由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向。

  二、过去遗留的问题:

  1去括号的问题

  2去分母的问题

  3系数化1的问题

  三、未知数系数含字母,没有分类讨论

  解决方案:1、在课堂巡堂时,检查每个学生的练习,发现问题及时纠正

  2、发挥学生的力量,开展“生帮生”的活动

  3、课余对还未掌握的学生进行课后个别辅导

  4、安排“解一元一次不等式”的小测,及时查缺补漏。

一元一次不等式的教学反思13

  本节课是以一元一次方程为脚手架,来学习一元一次不等式的概念及解法。

  教学目标明确,理念新颖,整个教学环节充分体现了学生的主体地位,并注重对数学思想方法的渗透。

  通过创设与学生实际生活联系密切的`问题情景,并由学生根据自己的经验分别列出一元一次方程和一元一次不等式,从中发现它们之间的内在联系,从而确定含括号的一元一次不等式的解法步骤,为探究含分母的一元一次不等式奠定了扎实的基础。

  在探究含分母的一元一次不等式解法中,一连抛出几个问题,引发学生思考,小组合作,谈论交流,归纳出解法步骤,这些活动中,真正凸显出学生是学习的主人。

  拓广探索让学生巩固了方程和不等式之间的内在联系,思维迁移开阔了学生的视野,使学生思维更加深刻灵活。

  另外,根据本节课内容特点,教师无需过多讲解,只需适时引导点拨,组织学生活动,有意识的让学生去观察比较、讨论归纳、展示讲解、质疑补充等,给予他们更多展示自己的机会和舞台。这是本节课的成功之处。

  不足之处是时间安排不够科学合理,学生展示时间过长。

一元一次不等式的教学反思14

  这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求一元一次不等式组解集的过程,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能:①准确的解一元一次不等式;②能正确地找出几个一元一次不等式解集的公共部分。在教学过程中,我利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于用“同大取大、同小取小、大小小大取中间、大大小小为无解”口诀求解不等式组,我认为这样可以让学生在不画数轴的情况下,更快地找到解集。

  在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的.时候有点耽误时间。

  让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。

  但是我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

  总体来讲,在教授中我深刻的体会到新教材与以往的不同,新教材以学生为本的教学理念始终贯穿本课。采用的将上课的主动权交给学生,新颖、有效。而学生的学习积极性有很大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,利用数形结合,变的有趣、易懂。不但促使学生掌握了课本上的知识,还促使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。只有自己不断的学习,充实自己,才能把新教材教好。

一元一次不等式的教学反思15

  一、教材分析

  1、地位和作用

  这一节内容在学生学习了前面一节一次函数后通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

  2、活动目标

  ①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。 ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

  ③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

  ④增强学生学数学,用数学,探索数学奥妙的'愿望,体验成功的感觉,品尝成功的喜悦。

  3、教学重点:(1).理解一元一次不等式与一次函数的转化关系及本质联系

  (2).掌握用图象求解不等式的方法.

  教学难点:图象法求解不等式中自变量取值范围的确定.

  二、学情分析

  八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

  三、学法分析

  1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

  2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

  四、教法分析

  由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

  ⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。

  ⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

  1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

  2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

  3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

  4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

【一元一次不等式的教学反思】相关文章:

一元一次不等式组教学反思09-11

一元一次方程教学反思09-06

一元二次方程的教学反思09-12

《江南》教学反思08-31

实践教学反思08-31

美术教学反思09-01

《猫》教学反思09-03

旋转的教学反思09-06

生物教学反思09-07

《背影》教学反思09-08