初中数学知识点总结

时间:2025-10-31 13:57:18 数学

(精华)初中数学知识点总结

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以提升我们发现问题的能力,因此我们需要回头归纳,写一份总结了。总结怎么写才是正确的呢?下面是小编精心整理的初中数学知识点总结,欢迎大家分享。

(精华)初中数学知识点总结

初中数学知识点总结1

  统计

  科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。

  扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

  各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

  平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

  加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

  中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的.那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

  调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

  频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

  概率

  可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

  概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。

  对于概率类问题特别要注意以下几点

  01 注意概率、机会、频率的共同点和不同点。

  02 注意题目中隐含求概率的问题。

  03 画树状图及其它方法求概率。

  04 摸球模型题注意放回和不放回。

  05 注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等。

  统计与概率会在中考中以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查。

  解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等。

  学好数学的方法有哪些

  1学好初中数学课前预习是重点

  数学解题思路和能力的培养主要在于课堂上,所以想要学好初中数学一定要重视数学的学习效率和提前预习。只有提前预习才知道自己哪里不会,这样在课堂上才会注意力集中不走神。同时在初中数学的课上,学生也要紧跟老师的解题思路,注意自己的解题思路和老师的有什么不同。尤其是基础知识和最基本的技能学习,课上数学老师讲完后,初中生要在课后及时复习,争取老师讲完每一节的知识后,学生都不要留下疑问。

  2独立完成初中数学作业

  在完成老师布置的作业时,初中生要学会自己能够独立完成,想要学好初中数学就要勤于思考,千万不能偷懒。平时对于自己弄不懂的题目和解题思路,不要放弃,静下心来认真分析和研究,尽量做到自己能够解决,实在是想不出来在问同学或者老师。对于初中数学的每一个学习阶段,都要学会进行整理和归纳。

  3多做题是学好初中数学的关键

  想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。

  4正确的对待初中数学考试

  初中学生数学想要打高分,就要把大部分的精力放在基础知识和解题的基本技能上面,因为在初中数学的考试中,基础题占了试卷的大部分,所以基础知识一定要记牢固。另外还要摆正自己的心态,这样在答初中数学题的时候思路才能清晰。

  N是指什么数学

  数学中的N表示的是集合中的自然数集,这是数学集合中的相关概念,需要掌握的还有:N+表示的是正整数集,Z表示的是集合中的整数集,Q表示的是有理数集,R表示的是实数集。

初中数学知识点总结2

  初中数学的学科地位很高,一直以来是三大学科之一,影响着物理化学的学习。

  圆心角

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  推理过程

  根据旋转的性质,将∠aob绕圆心o旋转到∠a'ob'的位置时,显然∠aob=∠a'ob',射线oa与oa'重合,ob与ob'重合,而同圆的半径相等,oa=oa',ob=ob',从而点a与a'重合,b与b'重合。

  因此,弧ab与弧a'b'重合,ab与a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  则得到上面定理。

  同样还可以得到:

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的'弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

  所以,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。

  圆的圆心角知识要领很容易掌握,经常会出现在关于圆的证明题中。

初中数学知识点总结3

  1、正数和负数的有关概念

  (1)正数:

  比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  4、任何数的绝对值是非负数。

  最小的正整数是1,最大的负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的绝对值,绝对值大的反而小。

  6、有理数加法

  (1)符号相同的'两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和。

  (2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零。

  (3)一个数同零相加,仍得这个数。

  加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)

  7、有理数减法:

  减去一个数,等于加上这个数的相反数。

  8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写。

  例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和。”

  9、有理数的乘法

  两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

  第一步:确定积的符号第二步:绝对值相乘

  10、乘积的符号的确定

  几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

  当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

  11、倒数:

  乘积为1的两个数互为倒数,0没有倒数。

  正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

  倒数是本身的只有1和-1。

  初中数学知识点总结2平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成。

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成。

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

初中数学知识点总结4

  一、角的定义

  “静态”概念:有公共端点的两条射线组成的图形叫做角。

  “动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

  如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

  二、角的换算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、补角的概念和性质:

  概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

  如果两个角的和是一个直角,那么这两个角叫做互为余角。

  说明:互补、互余是指两个角的'数量关系,没有位置关系。

  性质:同角(或等角)的余角相等;

  同角(或等角)的补角相等。

  四、角的比较方法:

  角的大小比较,有两种方法:

  (1)度量法(利用量角器);

  (2)叠合法(利用圆规和直尺)。

  五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。

  常见考法

  (1)考查与时钟有关的问题;(2)角的计算与度量。

  误区提醒

  角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

  初中数学知识点梳理

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。

  4.列一元一次方程解应用题:

  (1)读题分析法:多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

  (2)画图分析法:多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

  11.列方程解应用题的常用公式:

  (1)行程问题:距离=速度·时间;

  (2)工程问题:工作量=工效·工时;

  (3)比率问题:部分=全体·比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

  (5)商品价格问题:售价=定价·折·,利润=售价—成本,;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h。

  本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

初中数学知识点总结5

  知识要点:数列中的项必须是数,它可以是实数,也可以是复数。

  数列表示方法

  如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。

  数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式

  如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>;1)

  数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式

  有递推公式不一定有通项公式

  知识要领总结:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的.性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

初中数学知识点总结6

  有两条边相等的三角形叫等腰三角形

  相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。

  等腰三角形性质

  (1)具有一般三角形的边角关系

  (2)等边对等角;

  (3)底边上的高、底边上的中线、顶角平分线互相重合;

  (4)是轴对称图形,对称轴是顶角平分线;

  (5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;

  (6)顶角等于180减去底角的两倍;

  (7)顶角可以是锐角、直角、钝角而底角只能是锐角

  等腰三角形分类:可分为腰和底边不等的等腰三角形及等边三角形

  等边三角形性质

  ①具备等腰三角形的一切性质。

  ②等边三角形三条边都相等,三个内角都相等并且每个都是60。

  等腰三角形的判定

  ①利用定义;②等角对等边;

  等边三角形的判定

  ①利用定义:三边相等的'三角形是等边三角形

  ②有一个角是60的等腰三角形是等边三角形.

  含30锐角的直角三角形边角关系:在直角三角形中,30锐角所对的直角边等于斜边的一半。

  三角形边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。

初中数学知识点总结7

  1、xxx:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做xxx。

  2、xxx的分类

  3、xxx的三边关系:xxx任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从xxx的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做xxx的高。

  5、中线:在xxx中,连接一个顶点和它的对边中点的线段叫做xxx的中线。

  6、角平分线:xxx的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做xxx的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、xxx的稳定性:xxx的形状是固定的,xxx的这个性质叫xxx的稳定性。

  9、xxx内角和定理:xxx三个内角的和等于180°

  推论1直角xxx的两个锐角互余

  推论2xxx的一个外角等于和它不相邻的`两个内角和

  推论3xxx的一个外角大于任何一个和它不相邻的内角;xxx的内角和是外角和的一半

  10、xxx的外角:xxx的一条边与另一条边延长线的夹角,叫做xxx的外角。

  11、xxx外角的性质

  (1)顶点是xxx的一个顶点,一边是xxx的一边,另一边是xxx的一边的延长线;

  (2)xxx的一个外角等于与它不相邻的两个内角和;

  (3)xxx的一个外角大于与它不相邻的任一内角;

  (4)xxx的外角和是360°。

初中数学知识点总结8

  1、过两点有且只有一条直线

  2、两点之间线段最短

  3、同角或等角的补角相等——补角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

  8、如果两条直线都和第三条直线平行,这两条直线也互相平行

  9、同位角相等,两直线平行

  10、内错角相等,两直线平行

  11、同旁内角互补,两直线平行

  12、两直线平行,同位角相等

  13、两直线平行,内错角相等

  14、两直线平行,同旁内角互补

  15、定理

  xxx两边的和大于第三边

  16、推论

  xxx两边的差小于第三边

  17、xxx内角和定理:

  xxx三个内角的和等于180°

  18、推论1

  直角xxx的两个锐角互余

  19、推论2

  xxx的一个外角等于和它不相邻的两个内角的和

  20、推论3

  xxx的一个外角大于任何一个和它不相邻的内角

  21、全等xxx的对应边、对应角相等

  22、边角边公理(SAS):有两边和它们的夹角对应相等的两个xxx全等

  23、角边角公理(ASA):有两角和它们的夹边对应相等的

  两个xxx全等

  24、推论(AAS):有两角和其中一角的对边对应相等的两个xxx全等

  25、边边边公理(SSS):有三边对应相等的两个xxx全等

  26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角xxx全等

  27、定理1

  在角的平分线上的点到这个角的两边的距离相等

  28、定理2

  到一个角的两边的距离相同的点,在这个角的平分线上

  29、角的平分线是到角的两边距离相等的所有点的集合

  30、推论1

  等腰xxx顶角的平分线平分底边并且垂直于底边

  31、推论2

  等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;

  32、推论3

  等边xxx的各角都相等,并且每一个角都等于60°

  33、等腰xxx的判定定理

  如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

  34、等腰xxx的性质定理

  等腰xxx的两个底角相等

  (即等边对等角)

  35、推论1

  三个角都相等的xxx是等边xxx

  36、推论

  有一个角等于60°的等腰xxx是等边xxx

  37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38、直角xxx斜边上的中线等于斜边上的一半

  39、定理

  线段垂直平分线上的点和这条线段两个端点的距离相等

  40、逆定理

  和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41、线段的垂直平分线可看作和线段两端点距离相等的'所有点的集合

  42、定理1

  关于某条直线对称的两个图形是全等形

  43、定理

  如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44、定理3

  两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45、逆定理

  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46、勾股定理

  直角xxx两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果xxx的三边长a、b、c有关系a2+b2=c2,那么这个xxx是直角xxx

  48、定理

  四边形的内角和等于360°

  49、四边形的外角和等于360°

  50、多边形内角和定理

  n边形的内角的和等于(n-2)×180°

  51、推论

  任意多边的外角和等于360°

  52、平行四边形性质定理1

  平行四边形的对角相等

  53、平行四边形性质定理2

  平行四边形的对边相等

  54、推论

  夹在两条平行线间的平行线段相等

  55、平行四边形性质定理3

  平行四边形的对角线互相平分

  56、平行四边形判定定理1

  两组对角分别相等的四边形是平行四边形

  57、平行四边形判定定理2

  两组对边分别相等的四边

  形是平行四边形

  58、平行四边形判定定理3

  对角线互相平分的四边形是平行四边形

  59、平行四边形判定定理4

  一组对边平行相等的四边形是平行四边形

  60、矩形性质定理1

  矩形的四个角都是直角

  61、矩形性质定理2

  矩形的对角线相等

  62、矩形判定定理1

  有三个角是直角的四边形是矩形

  63、矩形判定定理2

  对角线相等的平行四边形是矩形

  64、菱形性质定理1

  菱形的四条边都相等

  65、菱形性质定理2

  菱形的对角线互相垂直,并且每一条对角线平分一组对角

  66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四边都相等的四边形是菱形

  68、菱形判定定理2

  对角线互相垂直的平行四边形是菱形

  69、正方形性质定理1

  正方形的四个角都是直角,四条边都相等

  70、正方形性质定理2

  正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71、定理1

  关于中心对称的两个图形是全等的

  72、定理2

  关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73、逆定理

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74、等腰梯形性质定理

  等腰梯形在同一底上的两个角相等

  75、等腰梯形的两条对角线相等

  76、等腰梯形判定定理

  在同一底上的两个角相等的梯

  形是等腰梯形

  77、对角线相等的梯形是等腰梯形

  78、平行线等分线段定理

  如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79、推论1

  经过梯形一腰的中点与底平行的直线,必平分另一腰

  80、推论2

  经过xxx一边的中点与另一边平行的直线,必平分第三边

  81、xxx中位线定理

  xxx的中位线平行于第三边,并且等于它的一半

  82、梯形中位线定理

  梯形的中位线平行于两底,并且等于两底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行线分线段成比例定理

  三条平行线截两条直线,所得的对应线段成比例

  87、推论

  平行于xxx一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88、定理

  如果一条直线截xxx的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于xxx的第三边

  89、平行于xxx的一边,并且和其他两边相交的直线,所截得的xxx的三边与原xxx三边对应成比例

  90、定理

  平行于xxx一边的直线和其他两边(或两边的延长线)相交,所构成的xxx与原xxx相似

  91、相似xxx判定定理1

  两角对应相等,两xxx相似(ASA)

  92、直角xxx被斜边上的高分成的两个直角xxx和原xxx相似

  93、判定定理2

  两边对应成比例且夹角相等,两xxx相似(SAS)

  94、判定定理3

  三边对应成比例,两xxx相似(SSS)

  95、定理

  如果一个直角xxx的斜边和一条直角边与另一个直角xxx的斜边和一条直角边对应成比例,那么这两个直角xxx相似(HL)

  96、性质定理1

  相似xxx对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97、性质定理2

  相似xxx周长的比等于相似比

  98、性质定理3

  相似xxx面积的比等于相似比的平方

  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圆是定点的距离等于定长的点的集合

  102、圆的内部可以看作是圆心的距离小于半径的点的集合

  103、圆的外部可以看作是圆心的距离大于半径的点的集合

  104、同圆或等圆的半径相等

  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

  107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  109、定理

  不在同一直线上的三点确定一个圆。

  110、垂径定理

  垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111、推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  112、推论2

  圆的两条平行弦所夹的弧相等

  113、圆是以圆心为对称中心的中心对称图形

  114、定理

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115、推论

  在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116、定理

  一条弧所对的圆周角等于它所对的圆心角的一半

  117、推论1

  同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118、推论2

  半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119、推论3

  如果xxx一边上的中线等于这边的一半,那么这个xxx是直角xxx

  120、定理

  圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  121、①直线L和⊙O相交

  0

  ②直线L和⊙O相切

  d=r

  ③直线L和⊙O相离

  d>r

  122、切线的判定定理

  经过半径的外端并且垂直于这条半径的直线是圆的切线

  123、切线的性质定理

  圆的切线垂直于经过切点的半径

  124、推论1

  经过圆心且垂直于切线的直线必经过切点

  125、推论2

  经过切点且垂直于切线的直线必经过圆心

  126、切线长定理

  从圆外一点引圆的两条切线相交与一点,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  127、圆的外切四边形的两组对边的和相等

  128、弦切角定理

  弦切角等于它所夹的弧对的圆周角?

  129、推论

  如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130、相交弦定理

  圆内的两条相交弦,被交点分成的两条线段长的积相等

  131、推论

  如果弦与直径垂直相交,那么弦的一半是它分直径xxx的两条线段的比例中项

  132、切割线定理

  从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?

  133、推论

  从圆外一点引圆的两条割线,这一点到每条

  割线与圆的交点的两条线段长的积相等

  134、如果两个圆相切,那么切点一定在连心线上

  135、①两圆外离

  d>R+r

  ②两圆外切

  d=R+r

  ③两圆相交

  R-r<d<R+r(R>r)

  ④两圆内切

  d=R-r(R>r)

  ⑤两圆内含

  d<R-r(R>r)

  136、定理

  相交两圆的连心线垂直平分两圆的公共弦

  137、定理

  把圆平均分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138、定理

  任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  139、正n边形的每个内角都等于(n-2)×180°/n

  140、定理

  正n边形的半径和边心距把正n边形分成2n个全等的直角xxx

  141、正n边形的面积Sn=pn*rn/2

  p表示正n边形的周长

  142、正xxx面积√3a^2/4

  a表示边长

  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  144、弧长计算公式:L=n兀R/180——》L=nR

  145、扇形面积公式:S扇形=n兀R^2/360=LR/2

  146、内公切线长=d-(R-r)

  外公切线长=d-(R+r)

初中数学知识点总结9

  一、平移变换:

  1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

  2。性质:(1)平移前后图形全等;

  (2)对应点连线平行或在同一直线上且相等。

  3。平移的作图步骤和方法:

  (1)分清题目要求,确定平移的方向和平移的距离;

  (2)分析所作的图形,找出构成图形的关健点;

  (3)沿一定的方向,按一定的距离平移各个关健点;

  (4)连接所作的各个关键点,并标上相应的字母;

  (5)写出结论。

  二、旋转变换:

  1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

  说明:

  (1)图形的旋转是由旋转中心和旋转的角度所决定的;

  (2)旋转过程中旋转中心始终保持不动。

  (3)旋转过程中旋转的方向是相同的。

  (4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

  2。性质:

  (1)对应点到旋转中心的距离相等;

  (2)对应点与旋转中心所连线段的.夹角等于旋转角;

  (3)旋转前、后的图形全等。

  3。旋转作图的步骤和方法:

  (1)确定旋转中心及旋转方向、旋转角;

  (2)找出图形的关键点;

  (3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

  (4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

  说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

  常见考法

  (1)把平移旋转结合起来证明三角形全等;

  (2)利用平移变换与旋转变换的性质,设计一些题目。

  误区提醒

  (1)弄反了坐标平移的上加下减,左减右加的规律;

  (2)平移与旋转的性质没有掌握。

初中数学知识点总结10

  第一章有理数

  一、正数和负数

  ⒈正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数

  注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

  零上8℃表示为:+8℃;零下8℃表示为:—8℃

  支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。 3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

  ⑵0是正数和负数的分界线,0既不是正数,也不是负数。

  二、有理数

  1、有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

  ⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

  注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。

  2、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p

  分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;?不是有理数;

  学霸分享的数学复习技巧

  1、把答案盖住看例题

  例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

  所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

  经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

  2、研究每题都考什么

  数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

  3、错一次反思一次

  每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

  学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

  4、分析试卷总结经验

  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c属于R,a≠0)根的判别,= b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的`同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

初中数学知识点总结11

  诱导公式的本质

  所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

  常用的诱导公式

  公式一: 设为任意角,终边相同的角的同一三角函数的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角与 -的'三角函数值之间的关系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

初中数学知识点总结12

  基本定理

  1、过两点有且只有一条直线

  2、两点之间线段最短

  3、同角或等角的补角相等

  4、同角或等角的余角相等

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

  8、如果两条直线都和第三条直线平行,这两条直线也互相平行

  9、同位角相等,两直线平行

  10、内错角相等,两直线平行

  11、同旁内角互补,两直线平行

  12、两直线平行,同位角相等

  13、两直线平行,内错角相等

  14、两直线平行,同旁内角互补

  15、定理xxx两边的和大于第三边

  16、推论xxx两边的差小于第三边

  17、xxx内角和定理xxx三个内角的和等于180°

  18、推论1直角xxx的两个锐角互余

  19、推论2 xxx的一个外角等于和它不相邻的两个内角的和

  20、推论3 xxx的一个外角大于任何一个和它不相邻的内角

  21、全等xxx的对应边、对应角相等

  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个xxx全等

  23、角边角公理( ASA)有两角和它们的夹边对应相等的两个xxx全等

  24、推论(AAS)有两角和其中一角的对边对应相等的两个xxx全等

  25、边边边公理(SSS)有三边对应相等的两个xxx全等

  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角xxx全等

  27、定理1在角的平分线上的点到这个角的两边的距离相等

  28、定理2到一个角的两边的距离相同的点,在这个角的平分线上

  29、角的平分线是到角的两边距离相等的所有点的集合

  30、等腰xxx的性质定理等腰xxx的`两个底角相等(即等边对等角)

  31、推论1等腰xxx顶角的平分线平分底边并且垂直于底边

  32、等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合

  33、推论3等边xxx的各角都相等,并且每一个角都等于60°

  34、等腰xxx的判定定理如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35、推论1三个角都相等的xxx是等边xxx

  36、推论2有一个角等于60°的等腰xxx是等边xxx

  37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38、直角xxx斜边上的中线等于斜边上的一半

  39、定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  42、定理1关于某条直线对称的两个图形是全等形

  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46、勾股定理直角xxx两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果xxx的三边长a、b、c有关系a2+b2=c2,那么这个xxx是直角xxx

  48、定理四边形的内角和等于360°

  49、四边形的外角和等于360°

  50、多边形内角和定理n边形的内角的和等于(n-2)×180°

初中数学知识点总结13

  动点与函数图象问题常见的四种类型:

   1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

  3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

  图形运动与函数图象问题常见的三种类型:

  1、线段与多边形的.运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  2、多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  3、多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象.

  动点问题常见的四种类型:

  1、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系.

  2、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.

  3、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系.

  4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

  总结反思:

   本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.

  解答动态性问题通常是对几何图形运动过程有一个完整、清晰的认识,发掘“动”与“静”的内在联系,寻求变化规律,从变中求不变,从而达到解题目的

  解答函数的图象问题一般遵循的步骤:

   1、根据自变量的取值范围对函数进行分段.

  2、求出每段的解析式.

  3、由每段的解析式确定每段图象的形状.

  对于用图象描述分段函数的实际问题,要抓住以下几点:

  1、自变量变化而函数值不变化的图象用水平线段表示.

  2、自变量变化函数值也变化的增减变化情况.

  3、函数图象的最低点和最高点.

初中数学知识点总结14

  在初中数学课堂教学中,教师不仅需要使用引人入胜的导语、精彩绝伦的讲课过程,同时还应该为学生营造一个回味无穷的课堂结尾,让学生学有所思,学有所悟。不过,在具体的初中数学课堂教学实践中,不少教师往往忽视结尾的重要性,从而弱化了教学效果,而运用艺术性的课堂结尾,能够有效提升学习效率。

  1、初中数学课堂结尾的重要意义

  初中数学课堂结尾指的是教师在结束讲课过程时,在更高层次方面挖掘数学知识之际的内在联系,以及数学思想方法,同导入环节一样,也是课堂教学的重要一部分。一节优秀的初中数学课,从开头直到结尾,教师与学生都应该在思维活跃状态,师生双方都是积极的投入者,应该充分利用课堂时间,使课堂教学效果最大化。在课堂结尾时,学生的思想往往比较放松,容易松懈、疲劳,学习注意力不集中,如果教师运用艺术性的课堂结尾,能够促使学生仍然保持较高的学习热情,使课堂中学习的数学知识在归纳中升华,在总结中延续,在练习中巩固,通过相互比较各个数学知识点之间的区别与联系,设置悬念激发学生的求知欲望,使学生对教学成果有更深层次的认知更加加深了学生对已学到的知识的认知。在初中数学课堂上,结尾与其它环节有机整合,可以使整节数学课产生和谐美与整体美,让学生回味悠长,从而提升数学知识的审美情趣。

  2、初中数学课堂艺术性结尾方法

  2.1运用归纳式结尾,训练思维的发散性:在初中数学课堂结束之前,教师可以使用归纳式的结尾方式,训练学生思维的发散性与集中性。初中数学课堂上的归纳式结尾,要求教师使用简洁、准确的表格、文字和图示等,对本节课已经前面所学习的数学知识进行归纳与总结,不仅可以帮助学生掌握数学知识的重点与系统性,还能够促使他们集中精力思考问题,以及运用数学信息综合分析问题的发散性思维能力,有利于提升学习效率。例如,在进行《直线、射线、线段》教学时,教师可以让学生对这三种线的异同点进行归纳和总结,通过对三者之间的对比与总结,对于直线、射线、线段之间的区别,学生能够掌握的更加深刻,通过生活中实例,让学生找出不同类型的直线、射线与线段,使他们的思维得以发散和集中。

  2.2运用悬念式结尾,训练思维的创造性:在初中数学课堂教学中,为培养学生的创造性思维,教师可以运用悬念式的课堂结尾模式,促使学生在悬念中活跃思维,然后发现新的问题,研究新规律,并且寻求解决问题的新手段。悬念式的初中数学课堂结尾意识形式,指的是教师根据本节课所讲的内容,设置一些与本节或下节知识相关的问题,然后引发学生对问题进行思考和分析,促使他们产生积极的学习状态,引发学生通过思考和分析探究新知识、得出新方法和总结新规律,从而培养学生的创造性思维。这个方法也可以通俗的讲为“吊胃口”,这个方法的好处在于可以调动学生的好奇心,引起他们的兴趣,再加一些奖励的措施,可以起到事半功倍的效果,好奇心和兴趣是学习的最大动力。例如,在进行《等腰三角形》教学时,为训练学生的创造性思维,在课堂结尾时教师可以设置这样一个悬念式问题:为什么等腰三角形会三线合一,让学生对其进行分析和研究,从而为下一节课《等边三角形》做铺垫,引导他们发现等边三角形是最为特殊的等腰三角形,激发学习动力。

  2.3运用讨论式结尾,训练思维的求异性:初中生对于新数学知识的学习与认识,往往是由区别它们的性质开始,所以,求异思维在初中数学教学中十分重要。同时,培养它们的求异思维也是初中数学教学的.主要目标之一。求异思维(DivergentThinking),又称辐射思维、放射思维、扩散思维或发散思维,是指大脑在思维时呈现的一种扩散状态的思维模式,它表现为思维视野广阔,思维呈现出多维发散状。如“一题多解”、“一事多写”、“一物多用”等方式,培养发散思维能力。不少心理学家认为,发散思维是创造性思维的最主要的特点,是测定创造力的主要标志之一。为训练学生的求异思维,初中数学教师可以运用讨论式的课堂结尾,让他们对某一数学问题进行探讨,通过互相讨论,彼此分享自己的看法与观点,然后进行比较和鉴别,发现数学知识的不同点与相同点,从而认识正确认识到数学知识的多元化,训练学生的求异思维。例如,在进行《正方形》教学时,针对课堂结尾,教师为培养学生的求异思维,可以让他们根据本节课的具体教学内容,从定义、性质和判定等方面,讨论正方形、菱形和矩形之间异同,促使学生在求异思维中构建数学知识的纵向联系与横向联系,加强对数学知识点的理解。

  2.4运用练习式结尾,训练思维的系统性:初中数学教师在课堂教学中运用练习式的结尾艺术,指的是在课堂临近结尾时,教师给学生布置一些练习作业,通过练习回顾和训练本节课的主要教学内容,从而训练他们的系统性思维。学生通过对练习题的分析和解决,可以使本节知识掌握的更加牢固和更深层次的理解,从而养成熟练的解题技巧;通过有效的课堂练习,可以检测学生对数学知识的掌握和运用情况,考察学生的数学学习能力和知识应用水平。例如,在进行《一次函数》中“函数的图象”教学时,针对课堂结尾,教师可以给学生布置一些课堂练习题,像:y=2x+3、y=7x-4和7=1/4x+8等,让他们画出这些一次函数的图像,以此来检测学生对知识的掌握与使用情况,促使他们数学知识学习的更加整体,训练学生的系统性思维。

  3、总结

  总之,在初中数学课堂教学中,结尾环节十分重要,许多初入课堂的教师讲课结束得太过突然,对结尾不够重视,有的虎头蛇尾、草草结尾,有的拖堂、拖泥带水啰嗦式的结尾,降低教学效果。他们的结束方法不够平顺,缺乏修饰。正确地说,他们没有结尾,只是突然而急骤地停止。这种方式造成的效果令人感到不愉快,也显示教师本人是个十足的外行。教师在具体的教学实践中对于结尾艺术应该给予特别关照,充分利用课堂结尾,帮助学生巩固数学知识,加强对数学知识的理解与记忆,为下节课做好铺垫工作,从而提升学生的学习效率。

初中数学知识点总结15

  1、乘法与因式分解

  a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)

  2、三角不等式

  |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  3、一元二次方程的解

  -b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

  4、根与系数的关系

  X1+X2=-b/a X1*X2=c/a注:韦达定理

  5、判别式

  ①b2-4a=0注:方程有相等的两实根

  ②b2-4ac>0注:方程有一个实根

  ③b2-4ac<0注:方程有共轭复数根

  6、三角函数公式

  ①两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  ②倍角公式

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  ③半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  ④和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

  ⑤某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)

  12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  ⑥正弦定理

  a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  ⑦余弦定理

  b2=a2+c2-2accosB注:角B是边a和边c的夹角

  ⑧圆的方程

  圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  ⑨立体体积与侧面积

  直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h

  正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

  圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*r a是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

  斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

  柱体体积公式V=s*h圆柱体V=pi*r2h

  二、初中几何公式

  1、平行线证明

  ①经过直线外一点,有且只有一条直线与这条直线平行

  ②如果两条直线都和第三条直线平行,这两条直线也互相平行

  ③同位角相等,两直线平行

  ④内错角相等,两直线平行

  ⑤同旁内角互补,两直线平行

  ⑥两直线平行,同位角相等

  ⑦两直线平行,内错角相等

  ⑧两直线平行,同旁内角互补

  2、全等三角形证明

  ①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  ②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  ③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  ④边边边公理(SSS)有三边对应相等的两个三角形全等

  ⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  3、三角形基本定理

  ①定理1在角的平分线上的点到这个角的两边的距离相等

  ②定理2到一个角的两边的距离相同的点,在这个角的平分线上

  ③角的平分线是到角的两边距离相等的所有点的集合

  ④等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  ⑤推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  ⑥等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  ⑦推论3等边三角形的各角都相等,并且每一个角都等于60°

  ⑧等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  ⑨直角三角形

  4、多边形定理

  ①定理四边形的内角和等于360°

  ②四边形的外角和等于360°

  ③多边形内角和定理n边形的.内角的和等于(n-2)×180°

  ④推论任意多边的外角和等于360°

  5、平行四边形证明与等腰梯形证明

  ①平行四边形性质定理1平行四边形的对角相等

  ②平行四边形性质定理2平行四边形的对边相等

  ③平行四边形性质定理3平行四边形的对角线互相平分

  ……

  ④矩形性质定理1矩形的四个角都是直角

  ⑤矩形性质定理2矩形的对角线相等

  ……

  ⑥等腰梯形性质定理等腰梯形在同一底上的两个角相等

  ⑦等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  ⑧推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  ⑨推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  7、相似三角形证明

  ①相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  ②判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  ③判定定理3三边对应成比例,两三角形相似(SSS)

  ④定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  ⑤性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  ⑥性质定理2相似三角形周长的比等于相似比

  ⑦性质定理3相似三角形面积的比等于相似比的平方

  8、弦和圆的证明

  ①定理不在同一直线上的三点确定一个圆。

  ②垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  ③推论1

  平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  ④推论2圆的两条平行弦所夹的弧相等

  ⑤圆是以圆心为对称中心的中心对称图形

  ⑥定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

  相等,所对的弦的弦心距相等

  ⑦线与圆的位置关系

  直线L和⊙O相交d

  直线L和⊙O相切d=r

  直线L和⊙O相离d>r

  ⑧圆与圆之间的位置关系

  两圆外离d>R+r②两圆外切d=R+r

  两圆相交R-r

  两圆内切d=R-r(R>r)

  两圆内含dr)

  QQ截图20150129173906.jpg

  三、数学学习方法

  1、突出一个“勤”字(克服一个“惰”字)

  数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,“勤能补拙是良训,一分辛劳一分才“:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)

  “口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”

  “手勤”(动手多实践,不仅光做题,做课件,做模型)

  这样的人聪明不聪明?

  最大的提高学习效率,首先要做到——上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识

  2、学好初中数学还有两个要点,要狠抓两个要点:

  学好数学,一要(动手),二要(动脑)。动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么。动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)。同学就是“题不离手”,这两个要点大家要记住。“动脑又动手,才能最大地发挥大脑的效率”

  3、做到“三个一遍”

  大家听过“失败是成功之母”听过“重复是学习之母”吗?培根(18-19世纪英国的哲学家)——“知识就是力量”,“重复是学习之母”。如何重复,我给你们解释一下:

  “上课要认真听一遍,动手推一遍,想一遍”

  “下课看”

  “考试前”

  4、重视“四个依据”

  读好一本教科书——它是教学、中考的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好做净一本习题集——它是使知识拓宽;

  记好一本心得笔记,最好每人自己准备一本错题集

【初中数学知识点总结】相关文章:

初中数学的知识点总结12-07

初中数学知识点总结08-13

初中数学重要知识点总结01-15

初中数学圆的知识点总结12-10

初中数学函数知识点总结01-13

初中数学圆知识点总结12-22

初中数学几何知识点总结12-08

数学初中知识点总结12-06

初中数学的知识点12-27

初中数学知识点总结【优选】08-14