初二数学知识点总结

时间:2025-09-09 07:06:15 数学

初二数学知识点总结

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,快快来写一份总结吧。那么总结有什么格式呢?以下是小编整理的初二数学知识点总结,欢迎阅读与收藏。

初二数学知识点总结

初二数学知识点总结1

  初二数学知识点总结归纳梳理

  1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

  一次项的系数.

  2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ① 列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数.

  3.将原多项式分解成(x+q)(x+p)的形式.

  (七)分式的乘除法

  1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

  2.分式进行约分的目的是要把这个分式化为最简分式.

  3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

  4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

  5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

  6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

  (八)分数的加减法

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

  4.通分的依据:分式的基本性质.

  5.通分的关键:确定几个分式的公分母.

  通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.

  6.类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

  8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

  9.作为最后结果,如果是分式则应该是最简分式.

  (九)含有字母系数的一元一次方程

  1.含有字母系数的一元一次方程

  引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

  在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

  含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

  10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

  11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

  12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的'先约分,使分式简化,然后再通分,这样可使运算简化.

  初二上学期数学知识点

  轴对称图形

  1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3.轴对称与轴对称图形的性质

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  ⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  全等三角形

  1、全等三角形的性质:全等三角形对应边相等、对应角相等。

  2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

  3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

  4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

  ①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系)

  ②、回顾三角形判定,搞清我们还需要什么

  ③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

  等腰梯形

  1、等腰梯形的定义

  两腰相等的梯形叫做等腰梯形。

  2、等腰梯形的性质

  (1)等腰梯形的两腰相等,两底平行。

  (2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

  (3)等腰梯形的对角线相等。

  (4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

  3、等腰梯形的判定

  (1)定义:两腰相等的梯形是等腰梯形

  (2)定理:在同一底上的两个角相等的梯形是等腰梯形

  (3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

  菱形

  1、菱形的定义

  有一组邻边相等的平行四边形叫做菱形

  2、菱形的性质

  (1)菱形的四条边相等,对边平行

  (2)菱形的相邻的角互补,对角相等

  (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

  (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

  3、菱形的判定

  (1)定义:有一组邻边相等的平行四边形是菱形

  (2)定理1:四边都相等的四边形是菱形

  (3)定理2:对角线互相垂直的平行四边形是菱形

  4、菱形的面积

  S菱形=底边长×高=两条对角线乘积的一半

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

  学好数学要重视“四个依据”是什么

  读好一本教科书——它是教学、考试的主要依据;

  记好一本笔记 ——它是教师多年经验的结晶;

  做好一本习题集——它是知识的拓宽;

  记好一本心得笔记——它是你自己的知识。

初二数学知识点总结2

  1轴对称图形和关于直线对称的两个图形

  2轴对称的性质

  轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

  如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

  线段垂直平分线上的点到线段两个端点的距离相等;

  到线段两个端点距离相等的点在这条线段的垂直平分线上。

  3用坐标表示轴对称

  点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).。

  4等腰三角形

  等腰三角形的两个底角相等;(等边对等角)

  等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

  理解:已知等腰三角形的一线就可以推知另两线。

  一个三角形的`两个相等的角所对的边也相等。(等角对等边)

  等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

  5等边三角形的性质和判定

  性质:等边三角形的三个内角都相等,都等于60度;

  判定:三个角都相等的三角形是等边三角形;

  有一个角是60度的等腰三角形是等边三角形;

  推论:

  1、直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

  2、在三角形中,大角对大边,大边对大角。

  3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

  由一个平面图形得到它的轴对称图形叫做轴对称变换。

  6轴对称图形

  1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

  3、轴对称图形和轴对称的区别与联系

  4.轴对称与轴对称图形的性质

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  ⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  7线段的垂直平分线

  定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

  性质:线段垂直平分线上的点与这条线段的两个端点的距离相等。

  判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上。

  8用坐标表示轴对称小结

  1、在平面直角坐标系中

  ①关于x轴对称的点横坐标相等,纵坐标互为相反数;

  ②关于y轴对称的点横坐标互为相反数,纵坐标相等;

  ③关于原点对称的点横坐标和纵坐标互为相反数;

  ④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

  ⑤关于与直线X=C或Y=C对称的坐标

  2、点(x, y)关于x轴对称的点的坐标为(x, -y)

  点(x, y)关于y轴对称的点的坐标为(-x, y)

  3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。

初二数学知识点总结3

  一次函数

  (1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

  (2)正比例函数图像特征:一些过原点的直线;

  (3)图像性质:

  ①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

  (4)求正比例函数的.解析式:已知一个非原点即可;

  (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

  (6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

  (7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

  (8)一次函数图像特征:一些直线;

  (9)性质:

  ①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

  ②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

  ③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

  ④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

  ⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

  (10)求一次函数的解析式:即要求k与b的值;

  (11)画一次函数的图像:已知两点;

  用函数观点看方程(组)与不等式

  (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

  (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

  (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

  (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

初二数学知识点总结4

  一.知识框架

  二知识概念

  1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  2.定理:经过证明被确认正确的命题叫做定理。

  3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的`逆命题。(例:勾股定理与勾股定理逆定理)

初二数学知识点总结5

  平均数

  基本公式:

  ①平均数=总数量÷总份数

  总数量=平均数×总份数

  总份数=总数量÷平均数

  ②平均数=基准数+每一个数与基准数差的和÷总份数

  基本算法:

  ①求出总数量以及总份数,利用基本公式①进行计算。

  ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的`积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。

初二数学知识点总结6

  一次函数

  一、正比例函数与一次函数的概念:

  一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

  一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.

  当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.

  二、正比例函数的`图象与性质:

  (1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

  (2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b>0图像经过一、二、三象限;

  (2)k>0,b<0图像经过一、三、四象限;

  (3)k>0,b=0图像经过一、三象限;

  (4)k<0,b>0图像经过一、二、四象限;

  (5)k<0,b<0图像经过二、三、四象限;

  (6)k<0,b=0图像经过二、四象限。

  一次函数表达式的确定

  求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.

  5.一次函数与二元一次方程组:

  解方程组

  从“数”的角度看,自变量(x)为何值时两个函数的值相等.并

  求出这个函数值

  解方程组从“形”的角度看,确定两直线交点的坐标.

  数据的分析

  数据的代表:平均数、众数、中位数、极差、方差

初二数学知识点总结7

  运算定律、法则

  1.分式的加、减、乘、除、乘方、开方法则

  2.分式的质

  ⑴基本质:=(m0)

  ⑵符号法则:

  ⑶繁分式:①定义;②化简方法(两种)

  3.整式运算法则(去括号、添括号法则)

  4.幂的运算质:①o=;②③=;④=;⑤

  技巧:

  5.乘法法则:⑴单⑵单⑶多多。

  6.乘法公式:(正、逆用)

  (a+b)(a-b)=

  (ab)=

  7.除法法则:⑴单⑵多单。

  8.因式分解:⑴定义;⑵方法:a.提公因式法;b.公式法;c.十字相乘法;d.分组分解法;e.求根公式法。

  9.算术根的'质:=;;(a0);(a0)(正用、逆用)

  10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:a.;b.;c..

初二数学知识点总结8

  平方根与立方根知识点

  平方根:

  概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。

  因为(±23)=529,所以±23是529的平方根。问:(1)16,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?

  概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

  概括3:求一个数a(a≥0)的平方根的运算,叫做开平方。

  开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。

  一、算术平方根的概念

  正数a有两个平方根(表示为?根,表示为a。0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0。”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:a,我们把其中正的平方根,叫做a的算术平方

  (1)被开方数a表示非负数,即a≥0;

  (2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a<0时,a无意义。

  如:=3,8是64的算术平方根,6无意义。9既表示对9进行开平方运算,也表示9的正的`平方根。

  二、平方根与算术平方根的区别在于

  ①定义不同;

  ②个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③表示方法不同:正数a的平方根表示为?a,正数a的算术平方根表示为a;④取值范围不同:正数的算术平方根一定是正数,正数的平方根是一正一负.⑤0的平方根与算术平方根都是0.

  三、例题讲解:

  例1、求下列各数的算术平方根:

  (1)100;

  (2)49;

  (3)0.8164

  注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算

  术平方根是非负数,即当a≥0时,a≥0(当a<0时,a无意义)

  用几何图形可以直观地表示算术平方根的意义如有一个面积为a(a应是非负数)、边长为

  的正方形就表示a的算术平方根。

  这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根。

  3、立方根

  (1)立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

  (2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

  (3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有的立方根。

  (4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数。

初二数学知识点总结9

  第十一章三角形

  一、三角形相关概念

  1.三角形的概念

  由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示

  通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段

  三角形的角平分线、中线、高线是三角形中的三种重要线段.

  (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.

  注意:

  ①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.

  ②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.

  ③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.

  (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心.

  ②画三角形中线时只需连结顶点及对边的中点即可.

  (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高。注意:

  ①三角形的.三条高是线段

  ②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.

  二、三角形三边关系定理

  ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.

  ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和

  三、三角形的稳定性

  三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.

  四、三角形的内角

  三角形内角和性质的推理方法有多种,常见的有以下几种:

  结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角

  ①可过A点作MN∥BC(如图)

  ②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)

  构造同旁内角,过任一顶点作射线平行于对边(如图)

  结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°

  (因为∠A+∠B+∠C=180°)

  注意:①在三角形中,已知两个内角可以求出第三个内角

  如:在△ABC中,∠C=180°-(∠A+∠B)

  ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.

  如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.

  五、三角形的外角

  1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:

  ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B. ③三角形的一个外角与与之相邻的内角互补3.外角个数

  过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.

  六、多边形

  ①多边形的对角线n(n?3)

  2

  条对角线

  ②n边形的内角和为(n-2)×180° ③多边形的外角和为360°

初二数学知识点总结10

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的'四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

初二数学知识点总结11

  轴对称

  1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2.性质

  (1)成轴对称的两个图形全等;

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

  一次函数

  (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

  (二)函数三要素

  1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

  2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

  3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

  (三)一次函数的表示方法

  1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

  2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

  3.图像法:用图象来表示函数关系的方法叫做图象法。

  (四)一次函数的性质

  1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

  2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

  3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

  4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

  5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

  6.平移时:上加下减在末尾,左加右减在中间。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的两条直角边的等于的平方。

  逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

  2.含30°的直角三角形的边的性质

  定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。

  3.直角三角形斜边上的中线等于斜边的一半。

  要点诠释:①勾股定理的逆定理在语言叙述的'时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”。

  ②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

  图形的平移与旋转

  1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

  2.平移性质

  (1)图形平移前后的形状和大小没有变化,只是位置发生变化。

  (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

  拓展阅读:初中数学提高解题速度的方法

  认真仔细审题

  对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

  有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

  做好归纳总结

  在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

  熟悉习题内容

  解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

  因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

  学会主动画图

  画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

  因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

  逐步增加难度

  人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

  我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

初二数学知识点总结12

  无理数:

  无限不循环小数叫无理数

  平方根

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  相信通过上面对实数知识的内容讲解学习,可以很好的帮助同学们对此知识的巩固学习吧,希望同学们在考试中取得优异成绩。

  中考数学知识点精讲:代数式

  对于初中数学代数式的学习,我们做了下面的内容归纳讲解,希望同学们好好学习下面讲解的知识

  代数式

  单独一个数或者一个字母也是代数式。

  合并同类项:

  ①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  ②把同类项合并成一项就叫做合并同类项。

  ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  以上对数学中代数式知识的讲解学习,同学们都能很好的掌握了吧,后面我们进行更多的关于数学知识点的讲解学习。

  中考数学有理数知识点精讲

  同学们对数学中有理数知识点的内容还熟悉吧,下面是老师对此知识点的内容做的详解,希望给同学们的学习上很好的帮助。

  有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的'相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  通过上面对数学中关于有理数的知识点内容讲解学习,相信可以很好的帮助同学们对数学知识的学习吧,同学们努力学习哦!

初二数学知识点总结13

  基本概念

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

  *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数

  1..自变量x和因变量y有如下关系:

  y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)

  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。2.当x=0时,b为函数在y轴上的截距。一次函数性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

  应用

  一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当ky2,则x1与x2的大小关系是()

  A.x1>x2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

  判断函数图象的位置例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限

  解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

  6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)

  走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b

  .函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()

  将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.

  已知函数y=3x+1,当自变量增加m时,相应的'函数值增加()A.3m+1B.3mC.mD.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.

  b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①

  和y2=kx2+b②

  (3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。15、一元一次方程与一次函数的关系

  任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

初二数学知识点总结14

  一、 在平面内,确定物体的位置一般需要两个数据。

  二、平面直角坐标系及有关概念

  1、平面直角坐标系

  在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

  3、点的坐标的概念

  对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

  点的'坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。

  平面内点的与有序实数对是一一对应的。

  4、不同位置的点的坐标的特征

  (1)、各象限内点的坐标的特征

  点P(x,y)在第一象限:x0

  点P(x,y)在第二象限:x0

  点P(x,y)在第三象限:x0

  点P(x,y)在第四象限:x0

  (2)、坐标轴上的点的特征

  点P(x,y)在x轴上,y=0 ,x为任意实数

  点P(x,y)在y轴上,x=0 ,y为任意实数

  点P(x,y)既在x轴上,又在y轴上, x,y同时为零,即点P坐标为(0,0)即原点

  (3)、两条坐标轴夹角平分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

  点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

  (4)、和坐标轴平行的直线上点的坐标的特征

  位于平行于x轴的直线上的各点的纵坐标相同。

  位于平行于y轴的直线上的各点的横坐标相同。

  (5)、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)

  点P与点p关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)

  点P与点p关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)

  (6)、点到坐标轴及原点的距离

  点P(x,y)到坐标轴及原点的距离:

  (1)点P(x,y)到x轴的距离等于|y|;

  (2)点P(x,y)到y轴的距离等于|x|;

  (3)点P(x,y)到原点的距离等于根号x*x+y*y

  三、坐标变化与图形变化的规律:

  坐标(x,y)的变化

  图形的变化

  x a或y a

  被横向或纵向拉长(压缩)为原来的a倍

  x a,y a

  放大(缩小)为原来的a倍

  x (-1)或y (-1)

  关于y轴或x轴对称

  x (-1),y (-1)

  关于原点成中心对称

  x +a或y+ a

  沿x轴或y轴平移a个单位

  x +a,y+ a

  沿x轴平移a个单位,再沿y轴平移a个单

初二数学知识点总结15

  分式

  一.知识框架

  二.知识概念

  1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

  2.分式有意义的条件:分母不等于0

  3.约分:把一个分式的分子和分母的公因式(不为1的.数)约去,这种变形称为约分。

  4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

  分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:

  A/B=A_C/B_C A/B=A÷C/B÷C(A,B,C为整式,且C≠0)

  5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

  6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:

  a/c±b/c=a±b/c

  2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

  3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b _ c/d=ac/bd

  4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

  (2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_d/c

  7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

  8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

【初二数学知识点总结】相关文章:

小升初数学知识点总结08-15

初中数学知识点总结08-13

小升初数学知识点总结【精选】08-15

高二数学知识点总结08-19

初中数学知识点总结【优选】08-14

小升初数学知识点总结精华(15篇)08-16

小升初数学知识点总结(共15篇)08-16

人教版高一数学知识点总结08-19

初中数学知识点总结优秀【15篇】08-14

高一数学的基本知识点总结09-03