七年级数学上册知识点

时间:2025-09-13 10:36:54 数学

七年级数学上册知识点

  在现实学习生活中,大家对知识点应该都不陌生吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点有助于大家更好的学习。下面是小编为大家收集的七年级数学上册知识点,仅供参考,欢迎大家阅读。

七年级数学上册知识点

七年级数学上册知识点1

  第一章 丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、生活中的立体图形

  生活中的立体图形

  柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

  正有理数 整数

  有理数 零 有理数

  负有理数 分数

  2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

  3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

  4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。

  正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。

  6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

  7、有理数的运算:

  (1)五种运算:加、减、乘、除、乘方

  多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

  有理数加法法则:

  同号两数相加,取相同的符号,并把绝对值相加。

  异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  一个数同0相加,仍得这个数。

  互为相反数的两个数相加和为0。

  有理数减法法则:减去一个数,等于加上这个数的相反数!

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  有理数除法法则:

  两个有理数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何非0的数都得0。

  注意:0不能作除数。

  有理数的乘方:求n个相同因数a的积的运算叫做乘方。

  正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

  (2)有理数的运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  (3)运算律

  加法交换律 加法结合律

  乘法交换律 乘法结合律

  乘法对加法的分配律

  8、科学记数法

  一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

  第三章 整式及其加减

  1、代数式

  用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

  ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

  ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

  ※代数式的书写格式:

  ①代数式中出现乘号,通常省略不写,如vt;

  ②数字与字母相乘时,数字应写在字母前面,如4a;

  ③带分数与字母相乘时,应先把带分数化成假分数,如应写作;

  ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

  ⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

  ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。

  2、整式:单项式和多项式统称为整式。

  ①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

  注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。

  ②多项式:几个单项式的.和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

  3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

  ②同类项与系数无关,与字母的排列顺序无关;

  ③几个常数项也是同类项。

  4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则

  ①根据去括号法则去括号:

  括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

  ②根据分配律去括号:

  括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

  6、添括号法则

  添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。

  7、整式的运算:

  整式的加减法:(1)去括号;(2)合并同类项。

  第四章 基本平面图形

  2、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  3、线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的大小关系和它们的长度的大小关系是一致的。

  4、线段的中点:

  点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  6、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  7、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  8、角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  9、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较,角可以参与运算。

  10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

  12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

  第五章 一元一次方程

  1、方程

  含有未知数的等式叫做方程。

  2、方程的解

  能使方程左右两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

  (2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.

  6、解一元一次方程的一般步骤:

  (1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1

  第六章 数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

七年级数学上册知识点2

  初一数学上册知识点第一章要点

  第一章丰富的图形世界

  1、几何图形

  从实物中抽象出来的各种图形,包括立体图形和平面图形。

  立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

  平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

  2、点、线、面、体

  (1)几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  (2)点动成线,线动成面,面动成体。

  3、常见的几何体及其特点

  长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。

  棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

  棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

  圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

  圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。

  球:由一个面(曲面)围成的几何体

  4、棱柱及其有关概念:

  棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

  侧棱:相邻两个侧面的交线叫做侧棱。

  n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  5、正方体的平面展开图:11种

  6、截一个正方体:

  (1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形. ②、长方体、棱柱的截面与正方体的截面有相似之处.

  (2)用平面截圆柱体,可能出现以下的几种情况.

  (3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)

  (4)用平面去截球体,只能出现一种形状的截面——圆。

  (5)需要记住的要点:

  几何体截面形状

  正方体三角形、正方形、长方形、梯形、五边形、六边形

  圆柱圆、长方形、(正方形)、……

  圆锥圆、三角形、……

  球圆

  初一上册数学知识点:第一章

  1.2有理数

  1.2.1有理数

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数。

  1.2.2数轴

  规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的作用:所有的有理数都可以用数轴上的点来表达。

  注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  1.2.3相反数

  只有符号不同的两个数叫做互为相反数。

  数轴上表示相反数的两个点关于原点对称。

  在任意一个数前面添上“-”号,新的数就表示原数的相反数。

  1.2.4绝对值

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的'数小于右边的数。

  比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

  ⑵两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  有理数的加法法则:

  ⑴同号两数相加,取相同的符号,并把绝对值相加。

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  ⑶一个数同0相加,仍得这个数。

  两个数相加,交换加数的位置,和不变。

  加法交换律:a+b=b+a

  三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

  加法结合律:(a+b)+c=a+(b+c)

  1.3.2有理数的减法

  有理数的减法可以转化为加法来进行。

  有理数减法法则:

  减去一个数,等于加这个数的相反数。

  a-b=a+(-b)

  初一上册数学知识点:第一章有理数

  1.4.2有理数的除法

  有理数除法法则:

  除以一个不等于0的数,等于乘这个数的倒数。

  a÷b=a? (b≠0)

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  1.5有理数的乘方

  1.5.1乘方

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

  负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数,0的任何正整数次幂都是0。

  有理数混合运算的运算顺序:

  ⑴先乘方,再乘除,最后加减;

  ⑵同级运算,从左到右进行;

  ⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

  1.5.2科学记数法

  把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  用科学记数法表示一个n位整数,其中10的指数是n-1。

  1.5.3近似数和有效数字

  接近实际数目,但与实际数目还有差别的数叫做近似数。

  精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

  对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

七年级数学上册知识点3

  七年级数学(上册)

  第一章有理数及其运算

  1.整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负

  整数和负分数通称为负数。

  2.正数都比0大,负数比0小,0既不是正数也不是负数。3.正整数、0、负整数、正分数、负分数这样的数称为有理数。

  4.相反数:只有符号不同的两个数互为相反数,a和-a互为相反数,0的相反数是0。在任意的数前面添上“-”号,就表示原来的数的相反数。

  5.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

  正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。当a是正数时,aa;当a是负数时,aa;当a=0时,a0

  6.两个负数比较大小,绝对值大的反而小。

  7.数轴上的两个点表示的数,右边的总比左边的大。

  8.有理数加法法则:同号两个数相加,取相同的符号,并把绝对值相加。

  异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并

  用较大的绝对值减去较小的绝对值。互为相反数的两数相加得0.

  一个数同0相加仍得这个数加法交换律:abba

  加法结合律:(ab)ca(bc)

  9.有理数减法法则:减去一个数等于加上这个数的相反数。

  10.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘积仍

  得0。

  11.倒数:乘积是1的两个数互为倒数。12.乘法交换律:abba

  乘法结合律:(ab)ca(bc)乘法分配律:(ab)cacbc

  13.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两个有理数相除,同号得正,异号得负,绝对值相除。0除以任何数都得0,且0不能作除数。

  14.有理数的乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。

  在a中a叫做底数,n叫做指数,a读作a的n次幂(或a的n次方)。

  15.乘方的正负:正数的任何次幂都是正数,

  负数的奇次幂是负数,负数的偶次幂是正数。

  16.混合运算顺序:先算乘方,再乘除,后加减;

  同级运算,从左到右进行;

  nn如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。

  n17.科学记数法:把一个大于10的数,表示成a10的形式,其中1a10,n是正整数,

  这种记数的方法叫做科学记数法。

  18.有效数字:从第一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个

  数的有效数字。

  第二章整式

  1.单项式:由数与字母的乘积组成的式子叫做单项式。

  2.系数:单项式前面的数字因数叫做这个单项式的系数。

  3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  4.多项式:几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

  5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。

  6.整式:单项式与多项式统称整式。

  7.同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。

  8.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。合并同类项后,所得项的'系数是合并前各同类项的系数的和,且字母部分不变。

  9.去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。10.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  第三章一元一次方程

  含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

  2.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。

  3.运用方程解决问题:

  (1)设未知数。

  (2)找出相等的数量关系,

  (3)根据相等关系列方程,解决问题。

  4.等式的性质:

  1、等式两边加(或减)同一个数(或式子),结果仍相等。如果ab,那么acbc

  2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  如果ab,那么acbc

  如果ab(c0),那么acbc5.移项:把等式一边的某项变号后移到另一边,叫做移项

  6.解方程步骤:解一元一次方程一般要去分母、去括号、移项、合并同类项、未知数的系

  数化为1等,最后得出xa的形式。

  第四章图形的初步认识

  1.经过两点有一条直线,并且只有一条直线。(两点确定一条直线)2.两点之间,线段最短。(两点间的线段长度,叫做这两点的距离)3.角度数的换算:1°=60分,1′=60秒

  4.角平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的角

  平分线。

  5.等角的补角相等,等角的余角相等。

七年级数学上册知识点4

  一.正数和负数

  ⒈正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数。

  注意:

  ①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2.具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的'量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃

  支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

  ⑵0是正数和负数的分界线,0既不是正数,也不是负数。

  二.有理数

  1.有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

  ⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

  注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。

  凡能写成q(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负p

  分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

七年级数学上册知识点5

  相反数

  ⒈相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2.相反数的.性质与判定

  ⑴任何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3.相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4.相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

  ⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

  ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化

  简得5)

  5.相反数的表示方法

  ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,-a<0(正数的相反数是负数)

  当a<0时,-a>0(负数的相反数是正数)

  当a=0时,-a=0,(0的相反数是0)

七年级数学上册知识点6

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.0即不是正数也不是负数。

  4.正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2.整数:正整数、0、负整数,统称整数。

  3.分数:正分数、负分数。

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab=ba

  4.乘法结合律:(ab)c=a(bc)

  5.乘法分配律:a(b+c)=ab+ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。

  4.同底数幂相除,底不变,指数相减。

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章整式(一)整式

  1.整式:单项式和多项式的统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数;一个单项式中,数字因数叫做这个单项式的系数。

  4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的'符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  数学初一期中上册知识点

  数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

七年级数学上册知识点7

  1、大于0的数叫做正数(positivenumber).

  2、在正数前面加上负号“-”的数叫做负数(negativenumber).

  3、整数和分数统称为有理数(rationalnumber).

  4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis).

  5、在直线上任取一个点表示数0,这个点叫做原点(origin).

  6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

  7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

  8、正数大于0,0大于负数,正数大于负数.

  9、两个负数,绝对值大的反而小.

  10、有理数加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加.

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

  (3)一个数同0相加,仍得这个数.

  11、有理数的加法中,两个数相加,交换交换加数的`位置,和不变.

  12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

  13、有理数减法法则

  减去一个数,等于加上这个数的相反数.

  14、有理数乘法法则

  两数相乘,同号得正,异号得负,并把绝对值向乘.

  任何数同0相乘,都得0.

  15、有理数中仍然有:乘积是1的两个数互为倒数.

  16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.

  17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

  18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

  19、有理数除法法则

  除以一个不等于0的数,等于乘这个数的倒数.

  20、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.

  21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an中,a叫做底数(basenumber),n叫做指数(exponeht)

  22、根据有理数的乘法法则可以得出

  负数的奇次幂是负数,负数的偶次幂是正数.

  显然,正数的任何次幂都是正数,0的任何次幂都是0.

  23、做有理数混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,最后加减;

  (2)同级运算,从左到右进行;

  (3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.

  24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.

  25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber).

  26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字

七年级数学上册知识点8

  第一章有理数

  1.1正数和负数

  (1)正数:大于零的数叫做正数。如:1,0.25,,69。

  负数:小于零的数叫做负数。如:-1,-3.8,-1/4,,-25。零:零既不是正数也不是负数整数:正数、0、负数

  (2)在同一个问题中,分别用正数和负数表示的量具有相反的意义。1.2有理数

  任何一个有理数都可以用数轴上的点表示。(1)有理数的分类

  (2)数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

  (3)相反数:只有符号不同的两个数叫做互为相反数。如2与-2,-5与5,a与-a等。①通常用a和-a表示一对相反数②若a与b互为相反数,则a+b=0

  ③互为相反数的两个数的绝对值相等,即|-a|=|a|④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)

  -aa

  -5-4-3-2-101234

  (4)绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,符号表示为(|a|)绝对值最小数为0(5)有理数数的比较:

  ①在数轴上表示的两个数右边的总比左边的大。

  ②两个正数比较大小,绝对值大的数大;两个负数绝对值大的反而小。③正数都大于零,负数都小于零,正数大于负数。1.3有理数的加减法

  (1)有理数加法

  法则1.同号两数相加,取相同的符号,并把他们的绝对值相加。

  法则2.绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。法则3.互为相反数的两数相加得零。法则4.一个数与零相加,仍得这个数。

  加法运算律:1交换律:a+b=b+a;2结合律:(a+b)+c=a+(b+c)。(2)有理数减法法则:

  减去一个数,等于加上这个数的相反数,用字母表示为a-b=a+(-b)。1.4有理数的乘除法(1)有理数乘法法则:

  1、两数相乘,同号得正,异号得负,并把绝对值相乘。

  2、几个不是0的数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正数,当负因数有奇数个时,积为负数;

  3、几个数相乘,只要有一个因数为0,积就为0。

  乘法运算律:1交换律:两个数相乘,交换因数的位置,积不变ab=ba;2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相乘,积不变。(ab)c=a(bc);3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个数相乘,再把积相加。a(b+c)=ab+ac。

  倒数:①乘积为1的两个数互为倒数。②零没有倒数

  ③互为倒数的两个数的符号相同.(2)有理数除法法则:

  1、除以一个不等于0的.数,等于乘这个数的倒数.

  2、两数相除,同号得正,异号得负,并把绝对值相相除。3、0除以任何一个不等于0的数都得0。

  规律:加减法和乘除法计算步骤先定符号再定绝对值1.5有理数的乘方

  求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,表示为an其中a叫做底数,n叫做指数。

  (1)乘方的幂意义:表示n个a相乘,如34表示4个3相乘,即34=3×3×3×3(2)正数的任何非0次幂都是0;

  负数的奇次幂是负数,负数的偶次幂是正数。(3)有理数混合运算顺序:

  1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行;

  3、如有括号,先算括号,从小到大。

  规律:几个非负数之和为0,则这几个非负数都为0。(4)、科学记数法

  1、把一个绝对值大于10的数表示成a×10n的形式(a是整数数位只有一位的数,n是比原整数数位小1的正整数),如236000000=2.36×108;-2450000=-2.45×1062、将用科学记数法表示的数还原,如:1.52×104=15200(5)有效数字、近似数

  近似数:接近实际数目。但是与实际数目还有差别的数。精确度:一个近似数四舍五入到哪一位。就说精确到哪一位。

  有效数字:一个数字从左边第一个非0的数字起到末位止,叫做这个数的有效数字。如:0.003020有四个有效数字,分别是3、0、2、0。

  对于科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

  第二章整式的加减

  1.整式的概念:

  (1)单项式:都是数字与字母的乘积的代数式叫做单项式。①单项式的系数:单项式中的数字因数。

  ②单项式的次数:单项式中所有的字母的指数和※注意:①圆周率π是常数;

  ②只含有字母因式的单项式的系数是1或-1时,“1”通常省略不写,如x,-b等;③单项式次数只与字母指数有关。如23a6的次数为6④单项式的系数是带分数时,应化成假分数。⑤单项式的系数包括它前面的符号。

  ⑥单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。

  2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。

  3.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  注意:①.若两个同类项的系数互为相反数,则两项的和等于零,如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。

  ②.多项式中只有同类项才能合并,不是同类项不能合并。

  ③.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如:-4x2+5x+5或写5+5x-4x2。4.整式的加减就是合并同类项的过程。5.整式去括号变化规律:

  (1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如:+(x-3)=x-3

  (2).如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。如:-(x-3)=-x+3

  6.整式加减的运算法则:

  一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.

  第三章一元一次方程

  1、等式的概念:用等号表示相等关系的式子叫做等式.2、等式的基本性质:

  (1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±c=b±c.

  (2)等式两边乘以(或除以)同一个不为0的数或代数式,所得的结果仍是等式.如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c

  此外等式还有其它性质:若a=b,则b=a.若a=b,b=c,则a=c.说明:①等式两边不可能同时除以为零的数或式子②等式的性质是解方程的重要依据.

  3、方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.4、一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.

  注意:a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.一般地,如果不设定a≠0,则关于x的方程ax=b的解有如下讨论:当a≠0时,方程有唯一解x=b/a;当a=0,b=0时,方程的解为一切数;当a=0,b≠0时,方程无解。

  关于绝对值方程|x|=a的解:当a≥0时,x=±a;当a<0时,无解。

  5、方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.

  6、关于移项:⑴移项实质是等式的基本性质1的运用.⑵移项时,一定记住要改变所移项的符号.

  7、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1。(具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.)8、方程的检验

  检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.

七年级数学上册知识点9

  1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

  2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

  3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。

  4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.

  单项式的系数:是指单项式中的'数字因数;(不要漏负号和分母)

  单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)

  5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。

  以上就是为大家整理的七年级上册数学代数式知识点整理:期末考试复习,大家还满意吗?希望对大家有所帮助!

七年级数学上册知识点10

  第1章有理数及其运算

  复习目标:

  1.能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。

  2.能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。

  3.学会用科学记数法来表示较大的数,会根据精确度取近似数,能判断一个近似数是精确到哪一位。

  4.能运用有理数及其运算解决实际问题。

  基础知识:

  1.大于0的数叫做正数,在正数的前面加上一个“-”号就变成负数(负数小于0),0既不是正数,也不是负数。正数和负数表示的意义相反:例如上升/下降,增加/减少,收入/支出,盈利/亏损,零上/零下,东/西,顺时针/逆时针

  2.整数和分数统称为有理数。整数又分为正整数,0,负整数;分数分为正分数和负分数。

  3.规定了原点、正方向、单位长度的直线叫做数轴。任何一个有理数都能在数轴上找到唯一的点来表示(注意:并不是数轴上的每一个点都表示有理数,有一些点表示的是无理数例如π)

  4.数轴上两个点表示的数,右边的数的总比左边的数大;正数都大于0,负数都小于0,正数总是大于负数。

  5.只有符号不同的两个数互为相反数。一般地,a和-a是一对互为相反数;特殊地,0的相反数是0。互为相反数的两个数绝对值相等(绝对值为a的数有两个:a和-a)。

  6.在数轴上表示一个数的点与原点之间的距离叫做这个数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是0;(绝对值是一个非负数)。两个负数比较大小,绝对值大的反而小。

  7.有理数加法法则:

  (1)同号两数相加,取加数的符号,并把绝对值相加;

  (2)异号两数相加:绝对值相等时和为0;绝对值不等时,取绝对值较大的加数的符号,并用大绝对值减去小绝对值;

  (3)任何一个数同0相加仍得这个数。

  8.有理数的减法法则:减去一个数,等于加上这个数的相反数;(减法其实就是加法。)

  9.加减混合运算统一看成是几个数的和的形式(省略加号和括号),根据加法的交换律和结合律进行运算。通常:

  (1)互为相反数相结合

  (2)符号相同相结合

  (3)分母相同的相结合

  (4)几个数相加得整数的相结合。

  10.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘积为0。多个数相乘看负因数的个数,偶数个则积为正,奇数个则积为负;并把所有因数的绝对值相乘。

  11.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不为0的数,都得0。

  12.乘积为1的两个数互为倒数,除以一个不为0的数等于乘以这个数的倒数;(除法其实就是乘法。)乘除混合运算统一化除为乘,再根据乘法法则进行运算。

  13.求几个相同因数的`积的运算叫做乘方(特殊的乘法运算),乘方的结果叫做幂。其中,a叫做底数,n叫做指数。正数的任何次幂都是正数;0的任何次幂都是0;负数的偶数次幂是正数,奇数次幂是负数。

  14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号(先算小括号,再中括号,最后大括号)。

  15.科学记数法:把大于10的数表示成a×n的形式。(其中a是整数位只有一位10的数,n是正整数;n=原数的整数位数-1)。

  16.取近似数:精确到哪一位就看后一位,四舍五入。有效数字:从一个数的第一个非零数字起,到末位数字为止,所有的数字都是这个数的有效数字。(例如:1.804有四个有效数字1、8、0、4。0.0668只有三个有效数字:6、6、8。)

七年级数学上册知识点11

  数轴

  ⒈数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

  可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

  2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的.点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4.数轴上特殊的(小)数

  ⑴最小的自然数是0,无的自然数;

  ⑵最小的正整数是1,无的正整数;

  ⑶的负整数是-1,无最小的负整数

  5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,,则a=0

七年级数学上册知识点12

  知识点1:正、负数的概念:我们把像3、2、+0。5、0.03%这样的数叫做正数,它们都是比0大的数;像—3、—2、—0.5、 —0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

  知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

  注:有限小数和无限循环小数都可看作分数。

  知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

  知识点4:绝对值的概念:

  (1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

  (2)代数意义:一个正数的绝对值是它的.本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  注:任何一个数的绝对值均大于或等于0(即非负数).

  知识点5:相反数的概念:

  (1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

  (2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

  知识点6:有理数大小的比较:

  有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

  数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

  用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

  知识点7:有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变。

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

  知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

  知识点11:乘法与除法

  1.乘法法则

  2.除法法则

  3.多个非零的数相乘除最后结果符号如何确定

  知识点12:倒数

  1.倒数概念

  2.如何求一个数的倒数?(注意与相反数的区别)

  知识点13:乘方

  1.乘方的概念,乘方的结果叫什么?

  2.认识底数,指数

  知识点14:混合计算

  注意:运算顺序是关键,计算时要严格按照顺序运算。考试经常考带乘方的计算。

  知识点15:科学记数法

  科学记数法的概念?注意a的范围

七年级数学上册知识点13

  第一章 有理数

  1.1正数和负数

  ①把0以外的数分为正数和负数。0是正数与负数的分界。

  ②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

  1.2有理数

  1.2.1有理数

  ①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  ②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。

  1.2.2数轴

  ①具有原点,正方向,单位长度的直线叫数轴。

  1.2.3相反数

  ①只有符号不同的数叫相反数。

  ②0的相反数是0 正数的相反数是负数 负数的相反数是正数

  1.2.4绝对值

  ①绝对值 |a|

  ②性质:正数的绝对值是它的本身

  负数的绝对值的它的相反数

  0的绝对值的0

  1.2.5数的大小比较

  ①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  ②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  ①同号两数相加,取相同的符号,并把绝对值相加。

  ②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  ③一个数同0相加,仍得这个数。

  ④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  ⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b

  1.3.2有理数的减法

  ①减去一个数,等于加这个数的相反数。a-b=a+(-b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  ①两数相乘,同号得正,异号的负,并把绝对值相乘。

  ②任何数同0相乘,都得0。

  ③乘积是1的两个数互为倒数。

  ④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba

  ⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b

  ⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

  1.4.2有理数的除法

  ①除以一个不等0的数,等于乘以这个数的倒数。

  ②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

  ③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  ④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

  1.5有理数的乘方

  1.5.1乘方

  ①求n个相同因数的积的'运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。

  ②负数的奇次幂是负数,负数的偶次幂的正数。

  ③正数的任何次幂都是正数,0的任何正整数次幂都是0。

  ④做有理数的混合运算时,应注意以下运算顺序:

  1.先乘方,再乘除,最后加减;

  2.同级运算,从左到右进行;

  3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  1.5.2科学记数法。

  ①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  1.5.3近似数

  ①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

  ②近似数与准确数的接近程度,可以用精确度表示。

  ③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

  第二章 整式的加减

  2.1整式

  ①单项式:表示数或字母积的式子

  ②单项式的系数:单项式中的数字因数

  ③单项式的次数:一个单项式中,所有字母的指数和

  ④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

  ⑤多项式里次数最高项的次数,叫做这个多项式的次数。

  ⑥单项式与多项式统称整式。

  2.2 整式的'加减

  ①同类项:所含字母相同,而且相同字母的次数相同的单项式。

  ②把多项式中的同类项合并成一项,叫做合并同类项。

  ③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  ④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

  ⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  ⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  第三章 一元一次方程

  3.1从算式到方程

  3.1.1一元一次方程

  ①方程:含有未知数的等式

  ②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。

  ③方程的解:使方程中等号左右两边相等的未知数的值

  ④求方程解的过程叫做解方程。

  ⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  3.1.2等式的性质

  ①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  ②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  3.2解一元一次方程(—)合并同类项与移项

  ①把等式一边的某项变号后移到另一边,叫做移项。

  3.3解一元一次方程(二) 去括号与去分母

  ①一般步骤:1.去分母

  2.去括号

  3.移项

  4.合并同类项

  5.系数化为一

  3.4实际问题与一元一次方程

  利用方程不仅能求具体数值,而且可以进行推理判断。

  第四章 图形认识初步

  4.1多姿多彩的图形

  4.1.1几何图形

  ①把实物中抽象出的各种图形统称为几何图形。

  ②几何图形的各部分不都在同一平面内,是立体图形。

  ③有些几何图形的各部分都在同一平面内,它们是平面图形。

  ④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。

  ⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  4.1.2点,线,面,体

  ①几何体也简称体。

  ②包围着体的是面。面有平的面和曲的面两种。

  ③面和面相交的地方形成线。(线有直线和曲线)

  ④线和线相交的地方是点。(点无大小之分)

  ⑤点动成线 ,线动成面,面动成体。

  ⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。

  ⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。

  ⑧线段的比较:1.目测法 2.叠合法 3.度量法

  4.2 直线,射线,线

  ①经过两点有一条直线,并且只有一条直线。

  ②两点确定一条直线。

  ③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

  ④射线和线段都是直线的一部分。

  ⑤把线段分成相等的两部分的点叫做中点。

  ⑥两点的所有连线中,线段最短。(两点之间,线段最短)

  ⑦连接两点间的线段的长度,叫做这两点的距离。

  4.3 角

  4.3.1角

  ①角也是一种基本的几何图形。

  ②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。

  ③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。

  ④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。

  ⑤以度,分,秒为单位的角的度量制,叫做角度制。

  4.3.2角的比较与运算

  ①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

  4.3.3余角和补角

  ①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

  ②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

  ③等角的补角相等。

  ④等角的余角相等。

  等差数列的性质

  (1)任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。

  (2)从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_。

  (3)若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq。

  (4)对任意的k∈N_,有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

  初中数学知识点

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

七年级数学上册知识点14

  第一章数学与我们同行

  一、生活数学

  1、生活中的数学

  观察、积累生活中常见的数学符号,了解它们表达的意义

  如:身份证号码、邮政编码……

  2、生活中的图形

  观察、认识生活中的图形,感知它们与数学知识的联系

  如:城市建筑群、超市的商品……

  二、活动思考

  1、数学活动——动手操作、探索新知

  数学活动包括观察、试验、操作、猜想、归纳等。

  2、数学思考——规律探索

  数形结合、从特殊到一般的思想方法图形规律、数字规律

  三、思想方法

  转化思想、建模思想、归纳思想、从特殊到一般……

  四、常见题型

  探究数字、图形规律题

  实践操作题

  图案设计题

  简单的数字推理题

  第二章有理数

  一、正数和负数

  1、正数和负数的概念

  (1)负数:比0小的数。

  (2)正数:比0大的数。

  0既不是正数,也不是负数。

  (3)注意:

  ①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)。

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。

  3、0表示的意义

  (1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

  (2)0是正数和负数的分界线,0既不是正数,也不是负数。

  二、有理数

  1、有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)。

  (2)正分数和负分数统称为分数。

  (3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  2、理解:只有能化成分数的数才是有理数。

  (1)π是无限不循环小数,不能写成分数形式,不是有理数。

  (2)②有限小数和无限循环小数都可化成分数,都是有理数。

  3、注意:

  引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

  三、数轴

  1、数轴的概念

  (1)规定了原点,正方向,单位长度的直线叫做数轴。

  (2)注意:

  ①数轴是一条向两端无限延伸的直线;

  ②原点、正方向、单位长度是数轴的三要素,三者缺一不可;

  ③同一数轴上的单位长度要统一;

  ④数轴的三要素都是根据实际需要规定的。

  2、数轴上的点与有理数的关系

  (1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  (2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3.利用数轴表示两数大小

  (1)在数轴上数的大小比较,右边的数总比左边的数大;

  (2)正数都大于0,负数都小于0,正数大于负数;

  (3)两个负数比较,距离原点远的数比距离原点近的数小。

  4.数轴上特殊的最大(小)数

  (1)最小的自然数是0,无最大的自然数;

  (2)最小的正整数是1,无最大的正整数;

  (3)最大的负整数是-1,无最小的负整数。

  5.a可以表示什么数

  (1)a>0表示a是正数;反之,a是正数,则a>0;

  (2)a<0表示a是负数;反之,a是负数,则a<0;

  (3)a=0表示a是0;反之,a是0,,则a=0。

  6.数轴上点的移动规律

  根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

  四、相反数

  1、相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:

  (1)相反数是成对出现的;

  (2)相反数只有符号不同,若一个为正,则另一个为负;

  (3)0的相反数是它本身;相反数为本身的数是0。

  2.相反数的性质与判定

  (1)任何数都有相反数,且只有一个;

  (2)0的相反数是0;

  (3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0。

  3.相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。

  说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4.相反数的求法

  (1)求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

  (2)求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

  (3)求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)

  5.相反数的.表示方法

  (1)一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

  ①当a>0时,-a<0(正数的相反数是负数)

  ②当a<0时,-a>0(负数的相反数是正数)

  ③当a=0时,-a=0,(0的相反数是0)

  6.多重符号的化简

  多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

  五、绝对值

  1、绝对值的几何定义

  一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

  2、绝对值的代数定义

  (1)一个正数的绝对值是它本身;

  (2)一个负数的绝对值是它的相反数;

  (3)0的绝对值是0。

  3、可用字母表示为

  (1)如果a>0,那么|a|=a;

  (2)如果a<0,那么|a|=-a;

  (3)如果a=0,那么|a|=0。

  4、可归纳为

  (1)a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)

  (2)a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

  5、绝对值的性质

  任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即

  (1)0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

  (2)一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

  (3)任何数的绝对值都不小于原数。即:|a|≥a;

  (4)绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

  (5)互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

  (6)绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

  (7)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  6、有理数大小的比较

  (1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

  (2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

  7、绝对值的化简

  (1)当a≥0时,|a|=a;

  (2)当a≤0时,|a|=-a。

  8、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。

  六、有理数的加减法

  1.有理数的加法法则

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)互为相反数的两数相加,和为零;

  (4)一个数与零相加,仍得这个数。

  2.有理数加法的运算律

  (1)加法交换律:a+b=b+a

  (2)加法结合律:(a+b)+c=a+(b+c)

  在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:

  ①互为相反数的两个数先相加——“相反数结合法”;

  ②符号相同的两个数先相加——“同号结合法”;

  ③分母相同的数先相加——“同分母结合法”;

  ④几个数相加得到整数,先相加——“凑整法”;

  ⑤整数与整数、小数与小数相加——“同形结合法”。

  3.加法性质

  一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:

  (1)当b>0时,a+b>a

  (2)当b<0时,a+b

  (3)当b=0时,a+b=a

  4.有理数减法法则

  减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。

  5.有理数加减法统一成加法的意义

  (1)在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

  (2)在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.

  (3)和式的读法:

  ①按这个式子表示的意义读作“负8、负7、负6、正5的和”;

  ②按运算意义读作“负8减7减6加5”。

  七、有理数的乘除法

  1.有理数的乘法法则

  法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)

  法则二:任何数同0相乘,都得0;

  法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;

  法则四:几个数相乘,如果其中有因数为0,则积等于0.

  2.倒数

  (1)乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·图片(a≠0),就是说a和图片互为倒数,即a是图片的倒数,图片是a的倒数。

  (2)注意:

  ①0没有倒数;

  ②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

  ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

  ④倒数等于它本身的数是1或-1,不包括0。

  3.有理数的乘法运算律

  (1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba

  (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).

  (3)乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac

  4.有理数的除法法则

  (1)除以一个不等0的数,等于乘以这个数的倒数。

  (2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

  5.有理数的乘除混合运算

  (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  (2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

  八、有理数的乘方

  1.乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。

  2.乘方的性质

  (1)负数的奇次幂是负数,负数的偶次幂的正数。

  (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

  九、有理数的混合运算

  做有理数的混合运算时,应注意以下运算顺序:

  1、先乘方,再乘除,最后加减;

  2、同级运算,从左到右进行;

  3、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  十、科学记数法

  把一个大于10的数表示成a10n的形式(其中图片,n是正整数),这种记数法是科学记数法。

七年级数学上册知识点15

  角的性质:

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较

  (3)角可以参与运算。

  时针问题:

  时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50。

  时针与分针夹角=分×5.50—时×300(分针靠近12点)

  时针与分针夹角=时×300—分×5.50(时针靠近12点)

  若结果大于1800,另一角度用3600减这个角度。

  经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。

  角的平分线

  从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  多边形

  由一些不在同一条直线上的.线段依次首尾相连组成的封闭平面图形,叫做多边形。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。n边形内角和等于(n—2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n—2)×1800 / n

  过n边形一个顶点有(n—3)条对角线,n边形共(n—3)×n / 2条对角线。

  圆、弧、扇形

  圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心

  弧:圆上A、B两点之间的部分叫做圆弧,简称弧。

  扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

  圆心角:顶点在圆心的角叫圆心角。

【七年级数学上册知识点】相关文章:

五年级数学上册知识点09-05

七年级数学知识点总结08-29

【精华】五年级数学上册知识点09-07

五年级数学上册知识点(荐)09-06

五年级数学上册知识点(精品)09-06

小学数学四年级上册知识点09-13

七年级上册数学教学计划09-05

(经典)七年级数学知识点总结15篇09-01

八年级上册数学知识点总结09-04

一年级数学上册知识点总结09-01