七年级数学上册知识点(实用)
在平凡的学习生活中,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。掌握知识点是我们提高成绩的关键!下面是小编为大家整理的七年级数学上册知识点,欢迎大家分享。
七年级数学上册知识点1
初一数学上册知识点第一章要点
第一章丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:
(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形. ②、长方体、棱柱的截面与正方体的截面有相似之处.
(2)用平面截圆柱体,可能出现以下的几种情况.
(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)
(4)用平面去截球体,只能出现一种形状的截面——圆。
(5)需要记住的要点:
几何体截面形状
正方体三角形、正方形、长方形、梯形、五边形、六边形
圆柱圆、长方形、(正方形)、……
圆锥圆、三角形、……
球圆
初一上册数学知识点:第一章
1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数
只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行。
有理数减法法则:
减去一个数,等于加这个数的相反数。
a-b=a+(-b)
初一上册数学知识点:第一章有理数
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a? (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的'运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
七年级数学上册知识点2
《三角形》知识点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
知识点、概念总结
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的意义和做法
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180°
推论1:直角三角形的两个锐角互余;
推论2:三角形的一个外角等于和它不相邻的两个内角和;
推论3:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的`内角和是外角和的一半。
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
分数与小数的互化
重要程度——四颗星。最早接触到分数是在三年级的课本上,学习了分数的意义、比较大小和同分母的加减法,这里的分数则是更加全面的去学习、认识分数。其中分数的基本性质里面会有分数的化简、约分,这也是接下来数学中非常常用的运算性质(类似四年级学习的乘法分配率);分数的大小比较也不再是简单的同分母或者一个个体的比较,复杂的一些还需要用到“放缩法”;分数的乘除运算法则则是数学运算的基本功了,越熟练越好(让孩子多练)。孩子在学习过程中遇到的第一个难点,那就属分数的应用题了(学生不明白什么时候用乘法什么时候用除法),往年很多学生都分不清题目中的:整体(单位“1”)、部分和占比(率),误区是学生们总认为整体比部分要大,但是学习分数以后就不一定了;
多边形外角和定理:
(1)n边形外角和等于n·180°—(n—2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n—3)条对角线,把多边形分词(n—2)个三角形。(2)n边形共有n(n—3)/2条对角线。
三个重要的数学思想
1、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。
2、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。
3、对应的思想。
初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。
数学解题技巧
养成预习的习惯
预习是一个很重要的点,尤其对于基础不好的女生来说,你本来基础就不好了,上课听的话更容易听不懂,这样很影响上课效率。在家提前预习的目的,就是为了先了解学习内容,所谓笨鸟先飞,所以准备工作一定要做好。提前预习好了,这样上课的话更容易懂一点,对知识的理解也更深一点,上课效率高了,做题自然就会了。
抓学习节奏
数学课没有一定的速度是无效学习,慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。
整理数学笔记
准备一本笔记本,把一些重要的公式,基本内容记录下来。不要以为数学只要一直刷题就可以了。连公式都记不住,再怎么刷也是无用的,效率不高,事倍功半!所以要把知识点记录下来,在配上典型例题,就可以熟记知识点,还加强运用,提高效率。
七年级数学上册知识点3
1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的`一般步骤:
(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;
(2)把两个方程的两边分别相加或相减,消去一个未知数;
(3)解这个一元一次方程,求出一个未知数的值;
(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:
①观察方程组中未知数的系数特点,确定先消去哪个未知数;
②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;
③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
七年级数学上册知识点4
一.正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数。
注意:
①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的`数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃
支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。
凡能写成q(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负p
分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
七年级数学上册知识点5
七年级数学(上册)
第一章有理数及其运算
1.整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负
整数和负分数通称为负数。
2.正数都比0大,负数比0小,0既不是正数也不是负数。3.正整数、0、负整数、正分数、负分数这样的数称为有理数。
4.相反数:只有符号不同的两个数互为相反数,a和-a互为相反数,0的相反数是0。在任意的数前面添上“-”号,就表示原来的数的相反数。
5.绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。当a是正数时,aa;当a是负数时,aa;当a=0时,a0
6.两个负数比较大小,绝对值大的反而小。
7.数轴上的两个点表示的数,右边的总比左边的大。
8.有理数加法法则:同号两个数相加,取相同的符号,并把绝对值相加。
异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并
用较大的绝对值减去较小的绝对值。互为相反数的两数相加得0.
一个数同0相加仍得这个数加法交换律:abba
加法结合律:(ab)ca(bc)
9.有理数减法法则:减去一个数等于加上这个数的'相反数。
10.有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘积仍
得0。
11.倒数:乘积是1的两个数互为倒数。12.乘法交换律:abba
乘法结合律:(ab)ca(bc)乘法分配律:(ab)cacbc
13.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两个有理数相除,同号得正,异号得负,绝对值相除。0除以任何数都得0,且0不能作除数。
14.有理数的乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂。
在a中a叫做底数,n叫做指数,a读作a的n次幂(或a的n次方)。
15.乘方的正负:正数的任何次幂都是正数,
负数的奇次幂是负数,负数的偶次幂是正数。
16.混合运算顺序:先算乘方,再乘除,后加减;
同级运算,从左到右进行;
nn如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。
n17.科学记数法:把一个大于10的数,表示成a10的形式,其中1a10,n是正整数,
这种记数的方法叫做科学记数法。
18.有效数字:从第一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个
数的有效数字。
第二章整式
1.单项式:由数与字母的乘积组成的式子叫做单项式。
2.系数:单项式前面的数字因数叫做这个单项式的系数。
3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
4.多项式:几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。
6.整式:单项式与多项式统称整式。
7.同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
8.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
9.去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。10.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章一元一次方程
含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。
2.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。
3.运用方程解决问题:
(1)设未知数。
(2)找出相等的数量关系,
(3)根据相等关系列方程,解决问题。
4.等式的性质:
1、等式两边加(或减)同一个数(或式子),结果仍相等。如果ab,那么acbc
2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果ab,那么acbc
如果ab(c0),那么acbc5.移项:把等式一边的某项变号后移到另一边,叫做移项
6.解方程步骤:解一元一次方程一般要去分母、去括号、移项、合并同类项、未知数的系
数化为1等,最后得出xa的形式。
第四章图形的初步认识
1.经过两点有一条直线,并且只有一条直线。(两点确定一条直线)2.两点之间,线段最短。(两点间的线段长度,叫做这两点的距离)3.角度数的换算:1°=60分,1′=60秒
4.角平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的角
平分线。
5.等角的补角相等,等角的余角相等。
七年级数学上册知识点6
角的性质:
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
时针问题:
时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50。
时针与分针夹角=分×5.50—时×300(分针靠近12点)
时针与分针夹角=时×300—分×5.50(时针靠近12点)
若结果大于1800,另一角度用3600减这个角度。
经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的.时间减去现在的时间。追及问题还可用追及度数/5.5。
角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
多边形
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。n边形内角和等于(n—2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n—2)×1800 / n
过n边形一个顶点有(n—3)条对角线,n边形共(n—3)×n / 2条对角线。
圆、弧、扇形
圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心
弧:圆上A、B两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
七年级数学上册知识点7
1.有理数:
(1)凡能写成x形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:x①x②
2.数轴:
数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0x?xa+b=0x?xa、b互为相反数。
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的.点离开原点的距离;
(2)x绝对值可表示为:x或x;绝对值的问题经常分类讨论;
5.有理数比大小:
(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数x>x0,小数-大数x 6.互为倒数: 乘积为1的两个数互为倒数;注意:0没有倒数;若xa≠0,那么x的倒数是x;若ab=1?xa、b互为倒数;若ab=-1?xa、b互为负倒数。 7.x有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数。 8.有理数加法的运算律: (1)加法的交换律:a+b=b+ax;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则: 减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10x有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 11x有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+acx. 12.有理数除法法则: 除以一个数等于乘以这个数的倒数;注意:零不能做除数,x. 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:x(-a)n=-an或(ax-b)n=-(b-a)nx,x当n为正偶数时:x(-a)nx=anx或x(a-b)n=(b-a)nx. 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法: 把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。 16.近似数的精确位: 一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。 17.有效数字: 从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。 18.混合运算法则: 先乘方,后乘除,最后加减。 1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式) 2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。 3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。 4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式. 单项式的系数:是指单项式中的.数字因数;(不要漏负号和分母) 单项数的次数:是指单项式中所有字母的指数的和.(注意指数1) 5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。 6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。 以上就是为大家整理的七年级上册数学代数式知识点整理:期末考试复习,大家还满意吗?希望对大家有所帮助! 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:单项式、整式 . 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号. 9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10.多项式的升幂和降幂排列:把一个多项式的`各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或 降幂排列). 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 11. 列代数式 列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了. 12.代数式的值 根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值. 13. 列代数式要注意 ① 字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。 一、整式的加减 1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。 3.多项式:几个单项式的和叫多项式。 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 5.整式:①单项式②多项式。 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。 7.合并同类项法则:系数相加,字母与字母的指数不变。 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。 9.整式的加减: 一找:(划线); 二“+”:(务必用+号开始合并); 三合:(合并)。 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。 二、一元一次方程 1.等式:用“=”号连接而成的式子叫等式。 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。 3.方程:含未知数的等式,叫方程。 4.方程的解:使等式左右两边相等的未知数的值叫方程的解; 注意:“方程的解就能代入”。 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。 7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质。 去分母----------同乘(不漏乘)最简公分母。 去括号----------注意符号变化。 移项----------变号(留下靠前)。 合并同类项--------合并后符号。 系数化为1---------除前面。 9.列一元一次方程解应用题: (1)读题分析法:…………多用于“和,差,倍,分问题”。 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。 (2)画图分析法:…………多用于“行程问题”。 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。 数学正多边形的外接圆和圆的内接正多边形知识点 正多边形与圆的关系非常密切,把圆分成n(n是大于2的自然数)等份,顺次连接各分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。 正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。 正多边形的半径:外接圆的半径叫做正多边形的半径。 正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。 正多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。 初中生如何能轻松学好数学 学好初中数学认真听课很重要 初中学生想要学好数学,在课上一定要认真听老师讲课。老师在课堂上讲的是非常重要的知识点,但是在初中数学课上选择做笔记并不是一个正确的做法。 在初中数学课上你需要做的`就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。大部分的初中数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。 初中生学习数学要会独立思考 初一初二是数学开窍的阶段,在解题上初中生一定要学会自己独立去思考。你需要做的就是不断的做题来培养自己的这一能力。而在积累到一定的数量之后,你的这种独立解题的能力是别人无法超越的。这个培养过程很简单也很短,只要你得到一点的成就感对于初中数学你就会充满自信。 其实,学好初中数学关键在于自己的真实能力,而不是形式。很多的初中生数学笔记一大堆,最后考试的成绩也就是那样。在学习上初中数学也好,其他科目也罢,不要讲究形式感,关键是要把一个个的问题和知识学透。 1.我们把实物中抽象的各种图形统称为几何图形。 2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。 3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。 4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5.几何体简称为体。 6.包围着体的是面,面有平的面和曲的面两种。 7.面与面相交的地方形成线,线和线相交的地方是点。 8.点动成面,面动成线,线动成体。 9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。 简述为:两点确定一条直线(公理)。 10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。 12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。 简单说成:两点之间,线段最短。(公理) 13.连接两点间的线段的长度,叫做这两点的距离。 14.角∠也是一种基本的几何图形。 15.把一个周角360等分,每一份就是1度的角,记作1°; 把一度的角60等分,每一份叫做1分的角,记作1′; 把1分的角60等分,每一份叫做1秒的.角,记作1〃。 16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。 17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。 18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角 19.等角的补角相等,等角的余角相等。 第一章数学与我们同行 一、生活数学 1、生活中的数学 观察、积累生活中常见的数学符号,了解它们表达的意义 如:身份证号码、邮政编码…… 2、生活中的图形 观察、认识生活中的图形,感知它们与数学知识的联系 如:城市建筑群、超市的商品…… 二、活动思考 1、数学活动——动手操作、探索新知 数学活动包括观察、试验、操作、猜想、归纳等。 2、数学思考——规律探索 数形结合、从特殊到一般的思想方法图形规律、数字规律 三、思想方法 转化思想、建模思想、归纳思想、从特殊到一般…… 四、常见题型 探究数字、图形规律题 实践操作题 图案设计题 简单的数字推理题 第二章有理数 一、正数和负数 1、正数和负数的概念 (1)负数:比0小的数。 (2)正数:比0大的数。 0既不是正数,也不是负数。 (3)注意: ①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)。 ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2、具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。 3、0表示的意义 (1)0表示“没有”,如教室里有0个人,就是说教室里没有人; (2)0是正数和负数的分界线,0既不是正数,也不是负数。 二、有理数 1、有理数的概念 (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)。 (2)正分数和负分数统称为分数。 (3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 2、理解:只有能化成分数的数才是有理数。 (1)π是无限不循环小数,不能写成分数形式,不是有理数。 (2)②有限小数和无限循环小数都可化成分数,都是有理数。 3、注意: 引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。 三、数轴 1、数轴的概念 (1)规定了原点,正方向,单位长度的直线叫做数轴。 (2)注意: ①数轴是一条向两端无限延伸的直线; ②原点、正方向、单位长度是数轴的三要素,三者缺一不可; ③同一数轴上的单位长度要统一; ④数轴的三要素都是根据实际需要规定的。 2、数轴上的点与有理数的关系 (1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 (2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数) 3.利用数轴表示两数大小 (1)在数轴上数的大小比较,右边的数总比左边的数大; (2)正数都大于0,负数都小于0,正数大于负数; (3)两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特殊的最大(小)数 (1)最小的自然数是0,无最大的自然数; (2)最小的正整数是1,无最大的正整数; (3)最大的负整数是-1,无最小的负整数。 5.a可以表示什么数 (1)a>0表示a是正数;反之,a是正数,则a>0; (2)a<0表示a是负数;反之,a是负数,则a<0; (3)a=0表示a是0;反之,a是0,,则a=0。 6.数轴上点的移动规律 根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。 四、相反数 1、相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意: (1)相反数是成对出现的; (2)相反数只有符号不同,若一个为正,则另一个为负; (3)0的相反数是它本身;相反数为本身的数是0。 2.相反数的性质与判定 (1)任何数都有相反数,且只有一个; (2)0的相反数是0; (3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0。 3.相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。 说明:在数轴上,表示互为相反数的两个点关于原点对称。 4.相反数的求法 (1)求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5); (2)求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); (3)求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5) 5.相反数的表示方法 (1)一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。 ①当a>0时,-a<0(正数的相反数是负数) ②当a<0时,-a>0(负数的'相反数是正数) ③当a=0时,-a=0,(0的相反数是0) 6.多重符号的化简 多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。 五、绝对值 1、绝对值的几何定义 一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。 2、绝对值的代数定义 (1)一个正数的绝对值是它本身; (2)一个负数的绝对值是它的相反数; (3)0的绝对值是0。 3、可用字母表示为 (1)如果a>0,那么|a|=a; (2)如果a<0,那么|a|=-a; (3)如果a=0,那么|a|=0。 4、可归纳为 (1)a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。) (2)a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。) 5、绝对值的性质 任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即 (1)0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0; (2)一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0; (3)任何数的绝对值都不小于原数。即:|a|≥a; (4)绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a; (5)互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|; (6)绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b; (7)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0) 6、有理数大小的比较 (1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小; (2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。 7、绝对值的化简 (1)当a≥0时,|a|=a; (2)当a≤0时,|a|=-a。 8、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。 六、有理数的加减法 1.有理数的加法法则 (1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两数相加,和为零; (4)一个数与零相加,仍得这个数。 2.有理数加法的运算律 (1)加法交换律:a+b=b+a (2)加法结合律:(a+b)+c=a+(b+c) 在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: ①互为相反数的两个数先相加——“相反数结合法”; ②符号相同的两个数先相加——“同号结合法”; ③分母相同的数先相加——“同分母结合法”; ④几个数相加得到整数,先相加——“凑整法”; ⑤整数与整数、小数与小数相加——“同形结合法”。 3.加法性质 一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即: (1)当b>0时,a+b>a (3)当b=0时,a+b=a 4.有理数减法法则 减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。 5.有理数加减法统一成加法的意义 (1)在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。 (2)在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5. (3)和式的读法: ①按这个式子表示的意义读作“负8、负7、负6、正5的和”; ②按运算意义读作“负8减7减6加5”。 七、有理数的乘除法 1.有理数的乘法法则 法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三) 法则二:任何数同0相乘,都得0; 法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0. 2.倒数 (1)乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·图片(a≠0),就是说a和图片互为倒数,即a是图片的倒数,图片是a的倒数。 (2)注意: ①0没有倒数; ②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置; ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质); ④倒数等于它本身的数是1或-1,不包括0。 3.有理数的乘法运算律 (1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc). (3)乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac 4.有理数的除法法则 (1)除以一个不等0的数,等于乘以这个数的倒数。 (2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 5.有理数的乘除混合运算 (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。 (2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。 八、有理数的乘方 1.乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。 2.乘方的性质 (1)负数的奇次幂是负数,负数的偶次幂的正数。 (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。 九、有理数的混合运算 做有理数的混合运算时,应注意以下运算顺序: 1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。 十、科学记数法 把一个大于10的数表示成a10n的形式(其中图片,n是正整数),这种记数法是科学记数法。 科学记数法:一个大于10的数可以表示成Ax10N的形式,其中1小于等于A小于10,N是正整数。 扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。 各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。 近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的'数位止,所有的数字都叫做这个数的有效数字。 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。 调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。 频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。 如何学好初中数学的方法 1重视课本的内容 书本知识是初中生学习数学最根本的一部分了,初中生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,初中生一定要熟练掌握。初中生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。 2通过联系对比进行辨析 在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。 数学分式方程的解法 1.一般解法:去分母法,即方程两边同乘以最简公分母。 2.特殊解法:换元法。 3.验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。 说明:解分式方程,一般先考虑换元法,再考虑去分母法。 2.1整式 1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。 2、单项式的系数:是指单项式中的数字因数; 3、单项数的次数:是指单项式中所有字母的指数的和。 4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的.次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。 5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。 6、单项式和多项式统称为整式。 2.2整式的加减 1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。 2、同类项必须同时满足两个条件: (1)所含字母相同; (2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关 3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。 4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变; 5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。 6、整式加减的一般步骤: 一去、二找、三合 (1)如果遇到括号按去括号法则先去括号。 (2)结合同类项。 (3)合并同类项 第一章有理数 1.1正数和负数 (1)正数:大于零的数叫做正数。如:1,0.25,,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,,-25。零:零既不是正数也不是负数整数:正数、0、负数 (2)在同一个问题中,分别用正数和负数表示的量具有相反的意义。1.2有理数 任何一个有理数都可以用数轴上的点表示。(1)有理数的分类 (2)数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 (3)相反数:只有符号不同的两个数叫做互为相反数。如2与-2,-5与5,a与-a等。①通常用a和-a表示一对相反数②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a|④若|a|=|b|,则a=b,或a=-b(a与b互为相反数) -aa -5-4-3-2-101234 (4)绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,符号表示为(|a|)绝对值最小数为0(5)有理数数的比较: ①在数轴上表示的两个数右边的总比左边的大。 ②两个正数比较大小,绝对值大的数大;两个负数绝对值大的反而小。③正数都大于零,负数都小于零,正数大于负数。1.3有理数的加减法 (1)有理数加法 法则1.同号两数相加,取相同的符号,并把他们的绝对值相加。 法则2.绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。法则3.互为相反数的两数相加得零。法则4.一个数与零相加,仍得这个数。 加法运算律:1交换律:a+b=b+a;2结合律:(a+b)+c=a+(b+c)。(2)有理数减法法则: 减去一个数,等于加上这个数的相反数,用字母表示为a-b=a+(-b)。1.4有理数的乘除法(1)有理数乘法法则: 1、两数相乘,同号得正,异号得负,并把绝对值相乘。 2、几个不是0的数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正数,当负因数有奇数个时,积为负数; 3、几个数相乘,只要有一个因数为0,积就为0。 乘法运算律:1交换律:两个数相乘,交换因数的位置,积不变ab=ba;2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相乘,积不变。(ab)c=a(bc);3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个数相乘,再把积相加。a(b+c)=ab+ac。 倒数:①乘积为1的两个数互为倒数。②零没有倒数 ③互为倒数的两个数的符号相同.(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的倒数. 2、两数相除,同号得正,异号得负,并把绝对值相相除。3、0除以任何一个不等于0的数都得0。 规律:加减法和乘除法计算步骤先定符号再定绝对值1.5有理数的乘方 求几个相同因数的积的运算,叫做乘方,乘方的'结果叫做幂,表示为an其中a叫做底数,n叫做指数。 (1)乘方的幂意义:表示n个a相乘,如34表示4个3相乘,即34=3×3×3×3(2)正数的任何非0次幂都是0; 负数的奇次幂是负数,负数的偶次幂是正数。(3)有理数混合运算顺序: 1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行; 3、如有括号,先算括号,从小到大。 规律:几个非负数之和为0,则这几个非负数都为0。(4)、科学记数法 1、把一个绝对值大于10的数表示成a×10n的形式(a是整数数位只有一位的数,n是比原整数数位小1的正整数),如236000000=2.36×108;-2450000=-2.45×1062、将用科学记数法表示的数还原,如:1.52×104=15200(5)有效数字、近似数 近似数:接近实际数目。但是与实际数目还有差别的数。精确度:一个近似数四舍五入到哪一位。就说精确到哪一位。 有效数字:一个数字从左边第一个非0的数字起到末位止,叫做这个数的有效数字。如:0.003020有四个有效数字,分别是3、0、2、0。 对于科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。 第二章整式的加减 1.整式的概念: (1)单项式:都是数字与字母的乘积的代数式叫做单项式。①单项式的系数:单项式中的数字因数。 ②单项式的次数:单项式中所有的字母的指数和※注意:①圆周率π是常数; ②只含有字母因式的单项式的系数是1或-1时,“1”通常省略不写,如x,-b等;③单项式次数只与字母指数有关。如23a6的次数为6④单项式的系数是带分数时,应化成假分数。⑤单项式的系数包括它前面的符号。 ⑥单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。 2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。 3.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。 注意:①.若两个同类项的系数互为相反数,则两项的和等于零,如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。 ②.多项式中只有同类项才能合并,不是同类项不能合并。 ③.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如:-4x2+5x+5或写5+5x-4x2。4.整式的加减就是合并同类项的过程。5.整式去括号变化规律: (1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如:+(x-3)=x-3 (2).如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。如:-(x-3)=-x+3 6.整式加减的运算法则: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 第三章一元一次方程 1、等式的概念:用等号表示相等关系的式子叫做等式.2、等式的基本性质: (1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±c=b±c. (2)等式两边乘以(或除以)同一个不为0的数或代数式,所得的结果仍是等式.如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c 此外等式还有其它性质:若a=b,则b=a.若a=b,b=c,则a=c.说明:①等式两边不可能同时除以为零的数或式子②等式的性质是解方程的重要依据. 3、方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.4、一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式. 注意:a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.一般地,如果不设定a≠0,则关于x的方程ax=b的解有如下讨论:当a≠0时,方程有唯一解x=b/a;当a=0,b=0时,方程的解为一切数;当a=0,b≠0时,方程无解。 关于绝对值方程|x|=a的解:当a≥0时,x=±a;当a<0时,无解。 5、方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程. 6、关于移项:⑴移项实质是等式的基本性质1的运用.⑵移项时,一定记住要改变所移项的符号. 7、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1。(具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.)8、方程的检验 检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边. 【七年级数学上册知识点】相关文章: 七年级数学上册知识点09-13 七年级数学上册知识点15篇【通用】09-14 五年级数学上册知识点09-05 七年级数学知识点总结08-29 【精华】五年级数学上册知识点09-07 小学数学四年级上册知识点09-13 五年级数学上册知识点(荐)09-06 五年级数学上册知识点(精品)09-06 七年级上册数学教学计划09-05 一年级数学上册知识点总结09-01七年级数学上册知识点8
七年级数学上册知识点9
七年级数学上册知识点10
七年级数学上册知识点11
七年级数学上册知识点12
七年级数学上册知识点13
七年级数学上册知识点14
七年级数学上册知识点15