高中数学知识点

时间:2025-09-20 10:35:49 数学

高中数学知识点合集[15篇]

  在我们平凡的学生生涯里,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。想要一份整理好的知识点吗?以下是小编精心整理的高中数学知识点,欢迎阅读与收藏。

高中数学知识点合集[15篇]

高中数学知识点1

  方差定义

  方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的`平均数。

  方差性质

  1.设C为常数,则D(C)=0(常数无波动);

  2.D(CX)=C2D(X)(常数平方提取);

  3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为

  当X、Y相互独立时,故第三项为零。

  独立前提的逐项求和,可推广到有限项。

  方差的应用

  计算下列一组数据的极差、方差及标准差(精确到0.01).

  50,55,96,98,65,100,70,90,85,100.

  答:极差为100-50=50.

高中数学知识点2

  总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,写总结有利于我们学习和工作能力的提高,让我们来为自己写一份总结吧。我们该怎么写总结呢?下面是小编收集整理的高中数学必修2知识点总结,欢迎大家分享。

  高中数学必修2知识点总结1

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。斜率反映直线与轴的倾斜程度。

  当0,90时,k0;当90,180时,k0;当90时,k不存在。

  yy1(x1x2)②过两点的直线的斜率公式:k2x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程

  ①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b③两点式:④截矩式:

  yy1y2y1xayxx1x2x1(x1x2,y1y2)直线两点x1,y1,x2,y2

  1b其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

  ⑤一般式:AxByC0(A,B不全为0)

  1各式的适用范围○2特殊的方程如:注意:○

  平行于x轴的直线:yb(b为常数);平行于y轴的直线:xa(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系

  平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:

  A0xB0yC0(C为常数)

  (二)过定点的直线系

  ()斜率为k的直线系:yy0kxx0,直线过定点x0,y0;

  ()过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为,其中直线l2不在直线系中。A1xB1yC1A2xB2yC20(为参数)(6)两直线平行与垂直

  当l1:yk1xb1,l2:yk2xb2时,l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点

  l1:A1xB1yC10l2:A2xB2yC20相交交点坐标即方程组A1xB1yC10的一组解。

  A2xB2yC20方程组无解l1//l2;方程组有无数解l1与l2重合(8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,(x2,y2)则|AB|(x2x1)2(y2y1)2

  (9)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d(10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  Ax0By0CAB22

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的

  半径。

  2、圆的方程

  (1)标准方程xaybr2,圆心a,b,半径为r;

  22(2)一般方程x2y2DxEyF0当DE2224F0时,方程表示圆,此时圆心为22D2,1E,半径为r22D2E24F

  当DE4F0时,表示一个点;当DE4F0时,方程不表示任何图

  形。

  (3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

  (1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为

  dAaBbCAB222,则有drl与C相离;drl与C相切;drl与C相交

  22(2)设直线l:AxByC0,圆C:xaybr2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有

  0l与C相离;0l与C相切;0l与C相交

  2注:如果圆心的位置在原点,可使用公式xx0yy0r去解直线与圆相切的问题,其中x0,y0表示切点坐标,r表示半径。

  (3)过圆上一点的切线方程:

  22

  ①圆x2+y2=r,圆上一点为(x0,y0),则过此点的切线方程为xx0yy0r(课本命题).

  2222

  ②圆(x-a)+(y-b)=r,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r(课本命题的推广).

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆C1:xa12yb12r2,C2:xa22yb22R2两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当dRr时两圆外离,此时有公切线四条;

  当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;当dRr时,两圆内切,连心线经过切点,只有一条公切线;当dRr时,两圆内含;当d0时,为同心圆。

  三、立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共

  边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱ABCDEA"B"C"D"E"或用对角线的端点字母,如五棱柱

  "AD

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且

  相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥PABCDE

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

  截面距离与高的比的平方。

  (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  """""表示:用各顶点字母,如五棱台PABCDE

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的'顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

  是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何

  体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和。

  (2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

  "

  S直棱柱侧面积S正棱台侧面积12chS圆柱侧2rhS正棱锥侧面积(c1c2)h"S圆台侧面积(rR)l

  12ch"S圆锥侧面积rl

  S圆柱表2rrlS圆锥表rrlS圆台表r2rlRlR2

  (3)柱体、锥体、台体的体积公式V柱ShV圆柱ShV台13(S""21rhV锥ShV圆锥1r2h

  33SSS)hV圆台13(S"SSS)h"13(rrRR)h

  22

  (4)球体的表面积和体积公式:V球4、空间点、直线、平面的位置关系

  =

  43R3;S

  球面=4R2

  (1)平面

  ①平面的概念:A.描述性说明;B.平面是无限伸展的;

  ②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

  也可以用两个相对顶点的字母来表示,如平面BC。

  ③点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

  直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  (即直线在平面内,或者平面经过直线)

  应用:检验桌面是否平;判断直线是否在平面内

  用符号语言表示公理1:Al,Bl,A,Bl(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

  公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a。

  符号语言:PABABl,Pl公理3的作用:

  ①它是判定两个平面相交的方法。

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系

  ①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。②求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系

  直线在平面内有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aa∥α

  (9)平面与平面之间的位置关系:平行没有公共点;α∥β

  相交有一条公共直线。α∩β=b

  5、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行。线面平行线线平行

  (2)平面与平面平行的判定及其性质两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)7、空间中的垂直问题

  (1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

  9、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为0。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为0。②平面的垂线与平面所成的角:规定为90。③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角7、空间直角坐标系

  (1)定义:如图,OBCDD,A,B,C,是单位正方体.以A为原点,分别以OD,OA,,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。这时建立了一个空间直角坐标系Oxyz.

  1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

  (2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

  (3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

  (4)空间两点距离坐标公式:d(x2x1)2(y2y1)2(z2z1)2

  高中数学必修2知识点总结2

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。斜率反映直线与轴的倾斜程度。当0,90时,k0;当90y2y1x2x1,180时,k0;当90时,k不存在。

  ②过两点的直线的斜率公式:k(x1x2)

  注意下面四点:

  (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b③两点式:

  yy1y2y1xyxx1x2x1(x1x2,y1y2)直线两点x1,y1,x2,y2

  ④截矩式:

  ab其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

  1

  ⑤一般式:

  AxByC0(A,B不全为0)

  注意:○1各式的适用范围○2特殊的方程如:

  平行于x轴的直线:yb(b为常数);平行于y轴的直线:(5)直线系方程:即具有某一共同性质的直线(一)平行直线系(二)过定点的直线系

  ()斜率为k的直线系:yy0kxx0,直线过定点x0,y0;()过两条直线l1:A1xB1yC10,l2xa(a为常数);

  平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:A0xB0yC0(C为常数)

  :A2xB2yC20的交点的直线系方程为

  A1xB1yC1A2xB2yC20((6)两直线平行与垂直

  当l1:yk1xb1,l2:yk2xb2时,

  为参数),其中直线l2不在直线系中。

  l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (7)两条直线的交点

  l1:A1xB1yC10l2:A2xB2yC20相交

  AxB1yC10交点坐标即方程组1的一组解。

  AxByC0222方程组无解l1//l2;方程组有无数解l1与l2重合

  (8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,(x2,y2)则|AB|(x2x1)(y2y1)

  (9)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离dAx0By0C

  AB22(10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程

  (1)标准方程xayb22r,圆心a,b,半径为r;

  2(2)一般方程x当D22yDxEyF0

  D222E24F0时,方程表示圆,此时圆心为2,1E,半径为r22D2E24F

  当DE4F0时,表示一个点;当DE4F0时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

  22(1)设直线l:AxByC0,圆C:xaybr2,圆心Ca,b到l的距离为dAaBbC,则有

  2222ABdrl与C相离;drl与C相切;drl与C相交

  (2)设直线l:AxByC0,圆C:xaybr,先将方程联立消元,得到一个一元二次方程之后,令

  222其中的判别式为,则有

  0l与C相离;0l与C相切;0l与C相交

  注:如果圆心的位置在原点,可使用公式xx0yy0r去解直线与圆相切的问题,其中x0,y0表示切点坐标,r表示

  2半径。

  (3)过圆上一点的切线方程:

  ①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为xx0yy0r(课本命题).

  ②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆C1:xa1yb1r2,C2:xa22222yb222R

  两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当dRr时两圆外离,此时有公切线四条;

  当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;当dRr时,两圆内切,连心线经过切点,只有一条公切线;当dRr时,两圆内含;当d三、立体几何初步

  0时,为同心圆。

  "(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

  S直棱柱侧面积S正棱台侧面积12chS圆柱侧2rhS正棱锥侧面积12ch"S圆锥侧面积rl

  (c1c2)h"S圆台侧面积(rR)l

  S圆柱表2rrlS圆锥表rrlS圆台表r2rlRlR2

  (3)柱体、锥体、台体的体积公式

  V柱ShV圆柱Sh211rhV锥ShV圆锥r2h

  V台13(S"SSS)hV圆台"133(S"SSS)h2

  "13(rrRR)h

  22(4)球体的表面积和体积公式:V球=4R3;S球面=4R4、空间点、直线、平面的位置关系(1)平面

  ①平面的概念:A.描述性说明;B.平面是无限伸展的;

  ②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

  也可以用两个相对顶点的字母来表示,如平面BC。

  ③点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A

  点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。

  (2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用:检验桌面是否平;判断直线是否在平面内用符号语言表示公理1:Al,Bl,A,Bl(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

  (4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a。符号语言:PABABl,Pl

  公理3的作用:①它是判定两个平面相交的方法。②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系

  ①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  ④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。②求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作

  出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系

  直线在平面内有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aa∥α

  (9)平面与平面之间的位置关系:平行没有公共点;α∥β

  相交有一条公共直线。α∩β=b

  5、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行

  (2)平面与平面平行的判定及其性质两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)7、空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。9、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为0。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为0。②平面的垂线与平面所成的角:规定为90。

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

  在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角.....的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角7、空间直角坐标系

  (1)定义:如图,OBCDDABC是单位正方体.以A为原点,

  分别以OD,OA,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。

  这时建立了一个空间直角坐标系Oxyz.

  1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

  (2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

  (3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)(4)空间两点距离坐标公式:d

  222(x2x1)(y2y1)(z2z1)

高中数学知识点3

  1.利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

  2.利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

  3.反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的"x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

  4.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

  5.在应用条件时,易A忽略是空集的情况

  6.你会用补集的思想解决有关问题吗?

  7.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

  8.你知道“否命题”与“命题的否定形式”的区别。

  9.求解与函数有关的问题易忽略定义域优先的原则。

  10.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

  11.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

  12.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

  13.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法

  14. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

  15.求函数的值域必须先求函数的定义域。

  16.如何应用函数的单调性与奇偶性解题?

  ①比较函数值的大小;

  ②解抽象函数不等式;

  ③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

  17.解对数函数问题时,你注意到真数与底数的限制条件了吗?

  (真数大于零,底数大于零且不等于1)字母底数还需讨论

  18.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

  19.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

  20.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的.零的情形?

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的"x值不构成区间);

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

高中数学知识点4

  集合

  一、集合概念

  (1)集合中元素的特征:确定性,互异性,无序性。

  (2)集合与元素的关系用符号=表示。

  (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。

  (4)集合的表示法:列举法,描述法,韦恩图。

  (5)空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。

  函数

  一、映射与函数:

  (1)映射的概念:(2)一一映射:(3)函数的概念:

  二、函数的三要素:

  相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)

  (1)函数解析式的求法:

  ①定义法(拼凑):②换元法:③待定系数法:④赋值法:

  (2)函数定义域的求法:

  ①含参问题的定义域要分类讨论;

  ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

  (3)函数值域的求法:

  ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;

  ②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;

  ④换元法:通过变量代换转化为能求值域的函数,化归思想;

  ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

  ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;

  ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

  ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

  三、函数的性质:

  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(—x)的关系。f(x)—f(—x)=0f(x)=f(—x)f(x)为偶函数;

  f(x)+f(—x)=0f(x)=—f(—x)f(x)为奇函数。

  判别方法:定义法,图像法,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x—a),则2a为函数f(x)的周期。

  应用:求函数值和某个区间上的函数解析式。

  四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。

  对称变换y=f(x)→y=f(—x),关于y轴对称

  y=f(x)→y=—f(x),关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

  一个重要结论:若f(a—x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

  点击查看:高中数学知识点

  五、反函数:

  (1)定义:

  (2)函数存在反函数的条件:

  (3)互为反函数的定义域与值域的关系:

  (4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。

  (5)互为反函数的图象间的关系:

  (6)原函数与反函数具有相同的单调性;

  (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

  七、常用的初等函数:

  (1)一元一次函数:

  (2)一元二次函数:

  一般式

  两点式

  顶点式

  二次函数求最值问题:首先要采用配方法,化为一般式,有三个类型题型:

  (1)顶点固定,区间也固定。如:

  (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。

  (3)顶点固定,区间变动,这时要讨论区间中的参数。

  等价命题在区间上有两根在区间上有两根在区间或上有一根

  注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。

  (4)反比例函数:

  (5)指数函数:指数函数:y=(a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0

  (6)对数函数:

  对数函数:y=(a>o,a≠1)图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0

  注意:比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。

  高中数学学习要注意的方法

  1、用心感受数学,欣赏数学,掌握数学思想。

  有位数学家曾说过:数学是用最小的空间集中了的理想。

  2、要重视数学概念的理解。

  高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f—1(x)的图象关于直线y=x对称,而y=f(x)与x=f—1(y)却有相同的图象;又如,为什么当f(x—1)=f(1—x)时,函数y=f(x)的图象关于y轴对称,而y=f(x—1)与y=f(1—x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

  3、对数学学习应抱着二个词――“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。

  至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的.方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

  4、建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。

  建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

  5、多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。

  “听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”――问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

  6、要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。

  您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜。

  高中数学复习的五大要点分析

  一、端正态度,切忌浮躁,忌急于求成

  在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:

  (1)对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。

  (2)复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。

  (3)在第一轮复习阶段,学习的重心应该转移到基础复习上来。

  因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。

  二、注重教材、注重基础,忌盲目做题

  要把书本中的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。

  可见,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。不妨以既是重点也是难点的函数部分为例,就必须掌握函数的概念,建立函数关系式,掌握定义域、值域与最值、奇偶性、单调性、周期性、对称性等性质,学会利用图像即数形结合。

  三、抓薄弱环节,做好复习的针对性,忌无计划

  每个同学在数学学习上遇到的问题有共同点,更有不同点。在复习课上,老师只能针对性去解决共同点,而同学们自己的个别问题则需要通过自己的思考,与同学们的讨论,并向老师提问来解决问题,我们提倡同学多问老师,要敢于问。每个同学必须了解自己掌握了什么,还有哪些问题没有解决,要明确只有把漏洞一一补上才能提高。复习的过程,实质就是解决问题的过程,问题解决了,复习的效果就实现了。同时,也请同学们注意:在你问问题之前先经过自己思考,不要把不经过思考的问题就直接去问,因为这并不能起到更大作用。

  高三的复习一定是有计划、有目标的,所以千万不要盲目做题。第一轮复习非常具有针对性,对于所有知识点的地毯式轰炸,一定要做到不缺不漏。因此,仅靠简单做题是达不到一轮复习应该具有的效果。而且盲目做题没有针对性,更不会有全面性。在概念模糊的情况下一定要回归课本,注意教材上最清晰的概念与原理,注重对知识点运用方法的总结。

  四、在平时做题中要养成良好的解题习惯,忌不思

  1、树立信心,养成良好的运算习惯。

  部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

  2、做好解题后的开拓引申,培养一题多解和举一反三的能力。

  解题能力的培养可以从一题多解和举一反三中得到提高,因而解完题后,需要再回味和引申,它包括对解题方法的开拓引申,即一道数学题从不同的角度去考虑去分析,可以有不同的思路,不同的解法。

  考虑的愈广泛愈深刻,获得的思路愈广阔,解法愈多样;及对题目做开拓引申,引申出新题和新解法,有利于培养同学们的发散思维,激发创造精神,提高解题能力:

  (1)把题目条件开拓引申。

  ①把特殊条件一般化;②把一般条件特殊化;③把特殊条件和一般条件交替变化。

  (2)把题目结论开拓引申。

  (3)把题型开拓引申,同一个题目,给出不同的提法,可以变成不同的题型。俗称为“一题多变”但其解法仍类似,按其解法而言,这些题又可称为“多题一解”或“一法多用”。

  3、提高解题速度,掌握解题技巧。

  提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

  五、学会总结、归纳,训练到位,忌题量不足

  我在暑期上课的时候发现,很多同学都是一看到题目就开始做题,这也是一轮复习应该避免的地方。做题如果不注重思路的分析,知识点的运用,效果可想而知。因此建议同学们在做题前要把老师上课时复习的知识再回顾一下,梳理知识体系,回顾各个知识点,对所学的知识结构要有一个完整清楚的认识,认真分析题目考查的知识,思想,以及方法,还要学会总结归纳不留下任何知识的盲点,在一轮复习中要注意对各个知识点的细化。这个过程不需要很长的时间,而且到了后续阶段会越来越熟练。因此,养成良好的做题习惯,有助于训练自己的解题思维,提高自己的解题能力。

  实践出真知,充足的题量是把理论转化为能力的一种保障,在足够的题目的练习下不仅可以更扎实的掌握知识点,还可以更深入的了解知识点,避免出现“会而不对、对而不全”的现象。由于高考依然是以做题为主,所以解题能力是高考分数的一个直接反映,尤其是数学试题。而解题能力不是三两道题就能提升的,而是要大量的反复的训练、认真细致的推敲才会有较大的提升。有句话说的好,“量变导致质变”,因此,同学们在每章复习的时候,一定要做足够的题,才能够充分的理解这一章的内容,才能够做到对这一章知识点的熟练运用。

  但是,大量训练绝对不是题海战术。因为针对每章节做题都有目标,同时做题训练都需要不断的总结,既要横向总结,也要纵向深入。只要在每章节做题做到一定程度的时候都能感觉到这一章的知识点有哪些,典型题型有哪些,方法和技巧有哪些,换句话说,如果随机抽取一些近几年关于这一章的高考题都会做,那我认为就可以了。

高中数学知识点5

  导数及其应用

  一.导数概念的引入

  数学选修2-2知识点总结

  1.导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是

  limf(x0x)f(x0)x,

  x0我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx,即

  0f(x0)=limf(x0x)f(x0)xx0

  例1.在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:

  s)存在函数关系

  h(t)4.9t6.5t10

  2运动员在t=2s时的瞬时速度是多少?解:根据定义

  vh(2)limh(2x)h(2)xx013.1

  即该运动员在t=2s是13.1m/s,符号说明方向向下

  2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于P时,直线PT与

  曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0)xnx0,当点Pn趋近于P时,函

  数yf(x)在xx0处的导数就是切线PT的斜率k,即

  klimf(xn)f(x0)xnx0f(x0)

  x03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即

  f(x)limf(xx)f(x)xx0

  二.导数的计算

  1.函数yf(x)c的导数2.函数yf(x)x的导数3.函数yf(x)x的导数

  4.函数yf(x)1x的导数

  基本初等函数的导数公式:

  1若f(x)c(c为常数),则f(x)0;2若f(x)x,则f(x)x1;3若f(x)sinx,则f(x)cosx4若f(x)cosx,则f(x)sinx;5若f(x)ax,则f(x)axlna6若f(x)ex,则f(x)ex

  x7若f(x)loga,则f(x)1xlna1x

  8若f(x)lnx,则f(x)导数的运算法则

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

  复合函数求导

  yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数yf(g(x))g(x)

  三.导数在研究函数中的应用1.函数的单调性与导数:

  一般的,函数的单调性与其导数的正负有如下关系:

  在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增;如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数

  极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:

  (1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;4.函数的最大(小)值与导数

  函数极大值与最大值之间的关系.

  求函数yf(x)在[a,b]上的最大值与最小值的.步骤(1)求函数yf(x)在(a,b)内的极值;

  (2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个

  最大值,最小的是最小值.

  四.生活中的优化问题

  利用导数的知识,,求函数的最大(小)值,从而解决实际问题

  第二章推理与证明

  考点一合情推理与类比推理

  根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理

  根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.

  类比推理的一般步骤:

  (1)找出两类事物的相似性或一致性;

  (2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);

  (3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的如果两个事物在某

  些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的

  (4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比

  得出的命题越可靠.

  考点二演绎推理(俗称三段论)

  由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.

  考点三数学归纳法

  1.它是一个递推的数学论证方法.

  2.步骤:A.命题在n=1(或n0)时成立,这是递推的基础;B.假设在n=k时命题成立C.证明n=k+1时命题也成立,

  完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。考点三证明1.反证法:2.分析法:3.综合法:

  第一章数系的扩充和复数的概念考点一:复数的概念

  (1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.

  (2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,

  叫做纯虚数.

  (3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.

  (4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5)复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部

  分叫做虚轴。

  (6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

  考点二:复数的运算

  1.复数的加,减,乘,除按以下法则进行设z1abi,z2cdi(a,b,c,dR)则

  z1z2(ac)(bd)iz1z2(acbd)(adbc)i

  z1z2(acbd)(adbc)icd22(z20)

  2,几个重要的结论

  2222(1)|z1z2||z1z2|2(|z1||z2|)

  (2)zz|z|2|z|2(3)若z为虚数,则|z|z3.运算律

  (1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)

  224.关于虚数单位i的一些固定结论:

  (1)i1(2)ii(3)i1(2)ii234nn2in3in

  扩展阅读:高中数学文科选修1-2知识点总结

  高中数学选修1-2知识点总结

  第一章统计案例

  1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系

  ③线性回归方程:ybxa(最小二乘法)

  nxiyinxyi1bn2其中,2xinxi1aybx注意:线性回归直线经过定点(x,y).

  2.相关系数(判定两个变量线性相关性):r(xi1nix)(yiy)2

  (xi1nix)(yi1niy)2注:⑴r>0时,变量x,y正相关;r第二章框图

  1.流程图

  流程图是由一些图形符号和文字说明构成的图示.流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清晰.3.结构图

  一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结构图,分类结构图及知识结构图等.

  第三章推理与证明

  1.推理⑴合情推理:

  归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理

  由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。归纳推理是由部分到整体,由个别到一般的推理。②类比推理

  由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。类比推理是特殊到特殊的推理。⑵演绎推理

  从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。演绎推理是由一般到特殊的推理。

  “三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

  2

  2.证明

  (1)直接证明①综合法

  一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。②分析法

  一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。(2)间接证明……反证法

  一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

  第四章复数

  1.复数的有关概念

  (1)把平方等于-1的数用符号i表示,规定i2=-1,把i叫作虚数单位.

  (2)形如a+bi的数叫作复数(a,b是实数,i是虚数单位).通常表示为z=a+bi(a,b∈R).(3)对于复数z=a+bi,a与b分别叫作复数z的______与______,并且分别用Rez与Imz表示.2.数集之间的关系

  复数的全体组成的集合叫作_____________,记作C.3.复数的分类

  实数(b=0)

  复数a+bi

  纯虚数(a=0)(a,b∈R)虚数(b≠0)

  非纯虚数(a≠0)

  4.两个复数相等的充要条件

  设a,b,c,d都是实数,则a+bi=c+di,当且仅当_________

  3

  5.复平面

  (1)定义:当用__________________的点来表示复数时,我们称这个直角坐标平面为复平面.(2)实轴:_______称为实轴.虚轴:_________称为虚轴.6.复数的模

  若z=a+bi(a,b∈R),则_______________.7.共轭复数

  (1)定义:当两个复数的实部________,虚部互为___________时,这样的两个复数叫作互为共轭复数.复数z的共轭复数用______表示,即若z=a+bi,则z-=__________.2)性质:==___________.

  必背结论

  1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虚数b≠0(a,b∈R);

  (3)z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+z=0(z≠0)z2

高中数学知识点6

  :平面

  1.经过不在同一条直线上的三点确定一个面.

  注:两两相交且不过同一点的四条直线必在同一平面内.

  2.两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)

  3.过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

  [注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.

  4.三个平面最多可把空间分成8部分.(X、Y、Z三个方向)

  :空间的直线与平面

  ⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.

  ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

  ⑴公理四(平行线的传递性).等角定理.

  ⑵异面直线的判定:判定定理、反证法.

  ⑶异面直线所成的角:定义(求法)、范围.

  ⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.

  ⒋直线和平面垂直

  ⑴直线和平面垂直:定义、判定定理.

  ⑵三垂线定理及逆定理.

  5.平面和平面平行

  两个平面的位置关系、两个平面平行的判定与性质.

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性质定理.

  (二)直线与平面的平行和垂直的证明思路(见附图)

  (三)夹角与距离

  7.直线和平面所成的角与二面角

  ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

  面所成的角、直线和平面所成的角.

  ⑵二面角:①定义、范围、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性质定理.

  8.距离

  ⑴点到平面的距离.

  ⑵直线到与它平行平面的距离.

  ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

  ⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

  (四)简单多面体与球

  9.棱柱与棱锥

  ⑴多面体.

  ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

  ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

  正方体;平行六面体的性质、长方体的性质.

  ⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

  ⑸直棱柱和正棱锥的'直观图的画法.

  10.多面体欧拉定理的发现

  ⑴简单多面体的欧拉公式.

  ⑵正多面体.

  11.球

  ⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

  ⑵球的体积公式和表面积公式.

  :常用结论、方法和公式

  1.异面直线所成角的求法:

  (1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

  (2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

  2.直线与平面所成的角

  斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;

  3.二面角的求法

  (1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

  (2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

  (4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此法不必在图形中画出平面角;

  特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

  4.空间距离的求法

  (1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

  (2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

  (3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;

高中数学知识点7

  集合与简单逻辑

  1易错点遗忘空集致误

  错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

  2易错点忽视集合元素的三性致误

  错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

  3易错点四种命题的结构不明致误

  错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

  这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

  另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

  4易错点充分必要条件颠倒致误

  错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

  p∨q假<=>p假且q假(概括为一真即真);

  p∧q假<=>p假或q假(概括为一假即假);

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  指数函数

  指数函数

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

高中数学知识点15

  选修4-4数学知识点

  一、选考内容《坐标系与参数方程》高考考试大纲要求:

  1.坐标系:

  ①理解坐标系的作用.

  ②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.

  ③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.

  ④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.

  2.参数方程:①了解参数方程,了解参数的意义.

  ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.

  二、知识归纳总结:

  1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换:yy,(0).的.作用下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

  2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

  3.点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为。有序数对(,)叫做点M的极坐标,记为M(,).极坐标(,)与(,2k)(kZ)表示同一个点。极点O的坐标为(0,)(R).

  4.若0,则0,规定点(,)与点(,)关于极点对称,即(,)与(,)表示同一点。如果规定0,02,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的。

  5.极坐标与直角坐标的互化:2x2y2,xcos,yysin,tan(x0)x

  6.圆的极坐标方程:在极坐标系中,以极点为圆心,r为半径的圆的极坐标方程是r;在极坐标系中,以C(a,0)(a0)为圆心,a为半径的圆的极坐标方程是2acos;在极坐标系中,以C(a,2)(a0)为圆心,a为半径的圆的极坐标方程是2asin;

  7.在极坐标系中,(0)表示以极点为起点的一条射线;(R)表示过极点的一条直线.在极坐标系中,过点A(a,0)(a0),且垂直于极轴的直线l的极坐标方程是cosa.

  8.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数txf(t),并且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条yg(t),曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,的函数简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。xarcos,(为参数).

  9.圆(xa)(yb)r的参数方程可表示为ybrsin.xacos,x2y2(为参数).椭圆221(ab0)的参数方程可表示为abybsin.x2px2,2(t为参数).抛物线y2px的参数方程可表示为y2pt.xxotcos,经过点MO(xo,yo),倾斜角为的直线l的参数方程可表示为(t为yyotsin.222参数).

  10.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.

【高中数学知识点】相关文章:

高中数学知识点09-19

高中数学必修三知识点09-03

高中数学知识点经典【15篇】09-20

(热)高中数学必修三知识点7篇09-04

高中数学教学反思09-05

初中数学知识点08-27

(热)初中数学知识点08-28

高考数学知识点大全08-31

[精品]初中数学知识点08-27